Аллотропные модификации углерода

Подтверждено существование новой аллотропной формы углерода • Новости науки

Аллотропные модификации углерода

Эксперименты показывают, что холодное (при комнатной температуре) сжатие графита под давлением свыше 100 тыс. атмосфер приводит к появлению нового состояния углерода, сопровождающегося перестройкой его внутренней структуры и изменением физических свойств.

Группе китайских, американских и российских ученых удалось теоретически рассчитать кристаллическую структуру графита, находящегося в таких условиях, и установить, что это неопознанное состояние углерода следует идентифицировать как его новую аллотропную форму.

Исследователи назвали это состояние M-углерод.

По многообразию полиморфных, или аллотропных (так как углерод — простое вещество), модификаций углерод уникален. В зависимости от кристаллической структуры разновидности этого химического элемента могут представлять собой большой набор совершенно разных веществ, от алмаза до графита, с разными электронными и механическими свойствами.

Одной из самых известных аллотропных форм углерода является алмаз — трехмерная структура, характеризующаяся тетраэдрическим расположением атомов углерода в кристаллической решетке (рис. 1a).

Это самый твердый из природных минералов — 10 по шкале твердости Мооса. Так, для разрушения алмаза необходимо использовать давление около 100 ГПа, или 1 млн атмосфер.

По своим электрическим свойствам чистый алмаз — диэлектрик.

Другая всем знакомая разновидность углерода — графит — представляет собой двумерную слоеную кристаллическую структуру. В этих слоях атомы углерода связаны ковалентными связями и располагаются в вершинах шестиугольника. Между слоями действуют силы Ван-дер-Ваальса, значительно более слабые по сравнению с ковалентной связью.

Отсюда и сильная анизотропия в физических свойствах графита. По шкале твердости (шкале Мооса) графит имеет наименьшую величину – 1. Кроме этого, он хороший проводник тока.

А монослой графита представляет собой уже отдельное вещество — графен, который, в принципе, также можно отнести к аллотропным формам углерода, поскольку он обладает уникальными физическими свойствами.

Менее известны другие полиморфные модификации углерода — например, гексагональный алмаз (или лонсдейлит), а также карбин, открытые в 60-е годы прошлого века.

Лонсдейлит по своему внутреннему строению напоминает алмаз, но с немного иным типом «упаковки» атомов — атомы углерода образуют в нём гексагональную кристаллическую решетку. Отсюда его второе название — гексагональный алмаз. Интересно, что впервые лонсдейлит был обнаружен в метеоритном кратере в Аризоне (США).

А в феврале 2009 года в журнале Physical Review Letters была опубликована статья, согласно которой чистый, не имеющий примесей лонсдейлит теоретически должен оказаться на 58% прочнее алмаза: его твердость будет равна 152 ГПа против приблизительно 100 ГПа у алмаза.

Таким образом, теоретически именно лонсдейлит, а не алмаз, следует считать самым твердым веществом на Земле.

Карбин — это одномерная, линейная цепочка атомов углерода (см. статью «Карбин — третья аллотропная модификация углерода: открытие и свойства» в газете «Химия»).

Карбин имеет полупроводниковые свойства, при этом под действием света его проводимость резко возрастает.

Вначале карбин синтезировали в лаборатории, а позже нашли в природе в виде минерала — прожилок и вкраплений в графите — тоже в метеоритном кратере, в Баварии (Германия). Природный минерал получил название чаоит.

К аллотропным модификациям углерода следует отнести также и семейство фуллеренов (низкие фуллерены — C24, C28, C30, C32, — средние фуллерены — C50, C60, C70, — гиперфуллерены — C76, C78, C82, C84, C90, C96, C102, C106, C110 и фуллерены-гиганты — C240, C540, C960), нанотрубки (одностенные и многостенные), а также аморфную форму углерода — стеклообразное, не имеющее упорядоченной кристаллической решетки вещество.

Но, похоже, полиморфизм углерода себя еще не исчерпал.

Эксперименты, проведенные различными группами ученых, показали, что графит, находящийся при комнатной температуре, под давлением выше 14 ГПа — при так называемом холодном сжатии — испытывает необычный структурный переход, сопровождающийся изменением электрического сопротивления, оптических свойств и твердости.

О том, что происходит внутренняя перестройка структуры графита, говорят также и данные рентгеноструктурного анализа. Высказывались предположения, что это может быть некая промежуточная фаза между алмазом и графитом (лонсдейлит) или даже аморфный углерод (рис. 2).

Однако рамановская спектроскопия и дифракционное рассеяние рентгеновских лучей вскоре опровергли эти гипотезы. И лишь после этого ученые стали говорить о возможности существования новой разновидности углерода. Необходимо было только выяснить, устойчива ли данная аллотропная модификация, какова ее кристаллическая структура, механические свойства и т. п.

Американо-российско-китайская группа ученых (Россию представлял Артем Оганов с геологического факультета МГУ) опубликовала в журнале Physical Review Letters работу Superhard Monoclinic Polymorph of Carbon (полный текст — PDF), в которой теоретическим путем было подтверждено существование еще одной аллотропной модификации углерода. Ученые назвали ее M-углерод.

В ходе вычислений выяснилось, что M-углерод имеет моноклинную структуру кристаллической решетки (рис. 3) и обладает твердостью почти как у алмаза. Результаты расчетов хорошо согласуются с экспериментальными данными. На основании этого авторы работы смогли идентифицировать упомянутое выше неопознанное состояние углерода как его совершенно новую аллотропную форму.

Если сравнивать M-углерод с остальными сверхтвердыми материалами, то по твердости он находится между двумя самыми твердыми материалами (без учета лонсдейлита): кубическим нитридом бора (с-BN), успешно использующимся как аналог алмазного инструмента, и собственно алмазом. В числах это выглядит так: твердость c-BN составляет 47 ГПа, M-углерода — 83,1 ГПа и алмаза — около 100 ГПа.

Кроме этого, ученые рассчитали зонную структуру M-углерода и выяснили, что, во-первых, новая разновидность углерода — это устойчивое соединение, а никак не метастабильное, как изначально предполагали некоторые исследователи, а во-вторых, M-углерод является диэлектриком.

С практической точки зрения выгоды очевидны. С помощью холодного сжатия (не доводя температуру до тысяч градусов, как в случае с трансформацией графита в алмаз) можно получить вещество, практически не уступающее по твердости алмазу и превосходящее используемый в промышленных целях кубический нитрид бора.

Источник: Quan Li, Yanming Ma, Artem R. Oganov, Hongbo Wang, Hui Wang, Ying Xu, Tian Cui, Ho-Kwang Mao, Guangtian Zou. Superhard Monoclinic Polymorph of Carbon // Physical Review Letters 102, 175506 (2009).

Юрий Ерин

Источник: https://elementy.ru/news/431105

Углерод. Аллотропия углерода — урок. Химия, 8–9 класс

Аллотропные модификации углерода

Углерод — химический элемент № \(6\). Он расположен в IVА группе Периодической системы.

C6+6)2e)4e

На внешнем слое атома углерода содержатся четыре валентных электрона, и до его завершения не хватает четырёх электронов. Поэтому в соединениях с металлами углероду характерна степень окисления \(–4\), а при взаимодействии с более электроотрицательными неметаллами он проявляет положительные степени окисления: \( +2\) или \(+4\).

В природе углерод встречается как в виде простых веществ, так и в виде соединений. В воздухе содержится углекислый газ.

 В земной коре распространены карбонаты (например, CaCO3 образует мел, мрамор, известняк).

Горючие ископаемые (уголь, торф, нефть, природный газ) состоят из органических соединений, главным элементом которых является углерод. 

Углерод относится к жизненно важным элементам, так как входит в состав молекул всех органических веществ.

Углерод образует несколько аллотропных видоизменений, из которых наиболее известны алмаз и графит.

Алмаз имеет атомную кристаллическую решётку. Каждый атом углерода в алмазе связан четырьмя прочными ковалентными связями с соседними атомами, расположенными в вершинах тетраэдра.

Благодаря такому строению алмаз — самое твёрдое из известных природных веществ. Все четыре валентных электрона каждого атома углерода участвуют в образовании связей, поэтому алмаз не проводит электрический ток. Это бесцветное прозрачное кристаллическое вещество, хорошо преломляющее свет.

Графит тоже имеет атомную кристаллическую решётку, но устроена она иначе. Решётка графита слоистая. Каждый атом углерода соединён прочными ковалентными связями с тремя соседними атомами. Образуются плоские слои из шестиугольников, которые между собой связаны слабо. Один валентный электрон у атома углерода остаётся свободным.

Графит представляет собой тёмно-серое вещество с металлическим блеском, жирное на ощупь. В отличие от алмаза графит непрозрачный, проводит электрический ток и оставляет серый след на бумаге. У графита очень высокая температура плавления (\(3700\) °С).

Алмаз и графит взаимопревращаемы. При сильном нагревании без доступа воздуха алмаз чернеет и превращается в графит. Графит можно превратить в алмаз при высокой температуре и большом давлении.

Из мельчайших частиц графита состоят сажа, древесный уголь и кокс. Сажа образуется при неполном сгорании топлива. Древесный уголь получают при нагревании древесины без доступа воздуха, а кокс — переработкой каменного угля.

Древесный уголь имеет пористое строение и обладает способностью поглощать газы и растворённые вещества. Такое свойство называется адсорбцией.

Аллотропные модификации углерода в химических реакциях могут проявлять и окислительные, и восстановительные свойства. Окислительные свойства углерода выражены слабее, чем у других неметаллов второго периода (азота, кислорода и фтора).

  • Взаимодействие с металлами.

Углерод реагирует с металлами при высокой температуре с образованием карбидов:

4Al0+3C0=tAl+34C−43.

В этой реакции углерод выступает как окислитель.

  • Взаимодействие с водородом.

Реакция происходит при сильном нагревании. Образуется метан. Углерод — окислитель.

C0+2H02=tC−4H+14.

  • Взаимодействие с кислородом.

Углерод горит в кислороде с образованием углекислого газа и проявляет в этой реакции восстановительные свойства:

C0+O02=tC+4O−22.

  • Взаимодействие с оксидами металлов.

Углерод способен восстанавливать металлы из их оксидов:

2Cu+2O+C0=t2Cu0+C+4O2.

Применение простых веществ

Алмаз применяется:

  • для обработки твёрдых поверхностей;
  • для резки стекла;
  • для изготовления буров и свёрл;
  • для изготовления ювелирных украшений.

Графит используется:

  • при изготовлении карандашей;
  • как твёрдая смазка в подшипниках;
  • для изготовления электродов;
  • в качестве замедлителя нейтронов в ядерных реакторах;
  • для получения искусственных алмазов.

Сажа:

  • входит в состав типографской краски, крема для обуви;
  • используется как наполнитель для производства резины.

Уголь используется:

  • в противогазах, промышленных и бытовых фильтрах;
  • для очистки сахарного сиропа, спирта и т. д.;
  • в медицине.

Кокс применяется в металлургической промышленности.

Источник: https://www.yaklass.ru/p/himija/89-klass/khimiia-nemetallov-157456/uglerod-i-ego-soedineniia-163475/re-28df6da6-8e46-4344-9b2d-1694f2fff357

Углерод

Аллотропные модификации углерода

Углерод (C, лат. carboneum) — химический элемент, символизируемый буквой C и имеющий атомный номер 6. Элемент является четырехвалентным неметаллом, т. е. имеет четыре свободных электрона для формирования ковалентных химических связей.

Он располагается в 14-й (по устаревшей классификации — в 4-й) группе периодической системы. Три изотопа данного элемента встречаются в окружающем нас мире. Изотопы 12C и 13C являются стабильными, в то время как 14C- радиоактивный (период полураспада данного изотопа составляет 5,730 лет).

Углерод был известен ещё в античном мире.

Способность углерода образовывать полимерные цепочки порождает огромный класс соединений на основе углерода, называемых органическими, которых значительно больше, чем неорганических, и изучением которых занимается органическая химия.

Углерод в виде древесного угля применялся в древности для выплавки металлов. Издавна известны аллотропные модификации углерода — алмаз и графит.

На рубеже XVII—XVIII вв. возникла теория флогистона, выдвинутая Иоганном Бехером и Георгом Шталем. Эта теория признавала наличие в каждом горючем теле особого элементарного вещества — невесомого флюида — флогистона, улетучивающегося в процессе горения.

Так как при сгорании большого количества угля остается лишь немного золы, флогистики полагали, что уголь — это почти чистый флогистон. Именно этим объясняли, в частности, «флогистирующее» действие угля, — его способность восстанавливать металлы из «известей» и руд.

Поздние флогистики, Реомюр, Бергман и другие, уже начали понимать, что уголь представляет собой элементарное вещество. Однако впервые таковым «чистый уголь» был признан Антуаном Лавуазье, исследовавшим процесс сжигания в воздухе и кислороде угля и других веществ.

В книге Гитона де Морво, Лавуазье, Бертолле и Фуркруа «Метод химической номенклатуры» (1787) появилось название «углерод» (carbone) вместо французского «чистый уголь» (charbone pur). Под этим же названием углерод фигурирует в «Таблице простых тел» в «Элементарном учебнике химии» Лавуазье.

В 1791 году английский химик Теннант первым получил свободный углерод; он пропускал пары фосфора над прокалённым мелом, в результате чего образовывались фосфат кальция и углерод. То, что алмаз при сильном нагревании сгорает без остатка, было известно давно.

Ещё в 1751 год германский император Франц I согласился дать алмаз и рубин для опытов по сжиганию, после чего эти опыты даже вошли в моду. Оказалось, что сгорает лишь алмаз, а рубин (окись алюминия с примесью хрома) выдерживает без повреждения длительное нагревание в фокусе зажигательной линзы.

Лавуазье поставил новый опыт по сжиганию алмаза с помощью большой зажигательной машины и пришёл к выводу, что алмаз представляет собой кристаллический углерод. Второй аллотроп углерода — графит — в алхимическом периоде считался видоизменённым свинцовым блеском и назывался plumbago; только в 1740 г. Потт обнаружил отсутствие в графите какой-либо примеси свинца.

Шееле исследовал графит (1779) и, будучи флогистиком, счёл его сернистым телом особого рода, особым минеральным углём, содержащим связанную «воздушную кислоту» (СО2) и большое количество флогистона.

Двадцать лет спустя Гитон де Морво путём осторожного нагревания превратил алмаз в графит, а затем в угольную кислоту.

Происхождение названия

В XVII—XIX веках в русской химической и специализированной литературе иногда применялся термин «углетвор» (Шлаттер, 1763; Шерер, 1807; Севергин, 1815); с 1824 года Соловьёв ввёл название «углерод». Соединения углерода имеют в названии часть карбо(н) — от лат. carbō (род. п. carbōnis) «уголь».

Физические свойства

Углерод существует во множестве аллотропных модификаций с очень разнообразными физическими свойствами. Разнообразие модификаций обусловлено способностью углерода образовывать химические связи разного типа.

Изотопы углерода

Основная статья: Изотопы углерода

Природный углерод состоит из двух стабильных изотопов — 12C (98,93 %) и 13C (1,07 %) и одного радиоактивного изотопа 14C (β-излучатель, Т½= 5730 лет), сосредоточенного в атмосфере и верхней части земной коры.

Он постоянно образуется в нижних слоях стратосферы в результате воздействия нейтронов космического излучения на ядра азота по реакции: 14N (n, p) 14C, а также, с середины 1950-х годов, как техногенный продукт работы АЭС и в результате испытания водородных бомб.

На образовании и распаде 14C основан метод радиоуглеродного датирования, широко применяющийся в четвертичной геологии и археологии.

Аллотропные модификации углерода

Упрощённая фазовая диаграмма углерода, заштрихованы области где аллотропные модификации могут быть метастабильны.

(diamond — алмаз, graphite — графит, liquid — жидкость, vapor — газ)Схемы строения различных модификаций углерода
a: алмаз, b: графит, c: лонсдейлит
d: фуллерен — бакибол C60, e: фуллерен C540, f: фуллерен C70
g: аморфный углерод, h: углеродная нанотрубка

Основная статья: Аллотропия углерода

  • Алмаз
  • Графен
  • Графит
  • Карбин
  • Лонсдейлит
  • Наноалмаз
  • Фуллерены
  • Фуллерит
  • Углеродное волокно
  • Углеродные нановолокна
  • Углеродные нанотрубки
  • Активированный уголь
  • Древесный уголь
  • Ископаемый уголь: антрацит и Ископаемый уголь.
  • Кокс каменноугольный, нефтяной и др.
  • Стеклоуглерод
  • Техуглерод
  • Сажа
  • Углеродная нанопена

На практике, как правило, перечисленные выше аморфные формы являются химическими соединениями с высоким содержанием углерода, а не чистой аллотропной формой углерода.

Кластерные формы

  • Астралены
  • Диуглерод
  • Углеродные наноконусы

Структура

Электронные орбитали атома углерода могут иметь различную геометрию, в зависимости от степени гибридизации его электронных орбиталей. Существует три основных геометрии атома углерода:

  • тетраэдрическая, образуется при смешении одного s- и трёх p-электронов (sp3-гибридизация). Атом углерода находится в центре тетраэдра, связан четырьмя эквивалентными σ-связями с атомами углерода или иными в вершинах тетраэдра. Такой геометрии атома углерода соответствуют аллотропные модификации углерода алмаз и лонсдейлит. Такой гибридизацией обладает углерод, например, в метане и других углеводородах.
  • тригональная, образуется при смешении одной s- и двух p-электронных орбиталей (sp2-гибридизация). Атом углерода имеет три равноценные σ-связи, расположенные в одной плоскости под углом 120° друг к другу. Не участвующая в гибридизации p-орбиталь, расположенная перпендикулярно плоскости σ-связей, используется для образования π-связи с другими атомами. Такая геометрия углерода характерна для графита, фенола и др.
  • дигональная, образуется при смешении одного s- и одного p-электронов (sp-гибридизация). При этом два электронных облака вытянуты вдоль одного направления и имеют вид несимметричных гантелей. Два других р-электрона дают π-связи. Углерод с такой геометрией атома образует особую аллотропную модификацию — карбин.

Графит и алмаз

Основные и хорошо изученные аллотропные модификации углерода — алмаз и графит. Термодинамический расчёт линии равновесия графит — алмаз на фазовой р, Т-диаграмме был выполнен в 1939 году О. И. Лейпунским.

При нормальных условиях термодинамически устойчив только графит, а алмаз и другие формы метастабильны. При атмосферном давлении и температуре выше 1200 K алмаз начинает переходить в графит, выше 2100 K превращение совершается взрывообразно. ΔН0 перехода — 1,898 кДж/моль.

Прямой переход графита в алмаз происходит при 3000 K и давлении 11—12 ГПа. При нормальном давлении углерод сублимируется при 3780 K.

Жидкий углерод

Жидкий углерод существует только при определённом внешнем давлении. Тройные точки: графит — жидкость — пар Т = 4130 K, р = 10,7 МПа и графит — алмаз — жидкость Т ≈ 4000 K, р ≈ 11 ГПа.

Линия равновесия графит — жидкость на фазовой р, Т-диаграмме обладает положительным наклоном, переходящим по мере приближения к тройной точке графит — алмаз — жидкость в отрицательный, что связано с уникальными свойствами атомов углерода создавать углеродные молекулы, состоящие из различного количества атомов (от двух до семи).

Наклон линии равновесия алмаз — жидкость, в отсутствие прямых экспериментов в области очень высоких температур (> 4000—5000 K) и давлений (> 10—20 ГПа), долгие годы считался отрицательным.

Проведённые японскими исследователями прямые эксперименты и обработка полученных экспериментальных данных с учётом аномальности высокотемпературной теплоёмкости алмаза показали, что наклон линии равновесия алмаз — жидкость положителен, т. е. алмаз тяжелее своей жидкости (в расплаве он будет тонуть, а не всплывать как лёд в воде).

В мае 2019 года в журнале Physical Review Letters опубликована работа российских учёных из Объединенного института высоких температур РАН А. М. Кондратьева и А. Д. Рахеля, в которой физики первыми, впервые в мире детально изучили и измерили свойства жидкой формы углерода.

Результаты физического эксперимента позволили получить новые данные, которые были недоступны исследователям в условиях компьютерного моделирования. Тонкая пластина высокоориентированного пиролитического графита с гексагональной осью, перпендикулярной его поверхности, была зажата между двумя пластинами особого материала и нагрета при давлении от 0,3 до 2,0 ГигаПаскалей.

Оказалось, что температура плавления графита при этих условиях составляет 6300–6700 Кельвинов, что более чем на 1000° выше значений, предсказанных теоретически и на математических моделях.

Исследователи впервые в мире точно измерили физические показатели процесса плавления углерода и свойства его жидкой фазы (удельное сопротивление, энтальпию плавления, изохорную теплоёмкость и многие другие показатели этого загадочного вещества. Они также обнаружили, что скорость звука в жидком углероде возрастает при уменьшении плотности.

Углерод III

При давлении свыше 60 ГПа предполагают образование весьма плотной модификации С III (плотность на 15—20 % выше плотности алмаза), имеющей металлическую проводимость. При высоких давлениях и относительно низких температурах (ок.

1200 K) из высокоориентированного графита образуется гексагональная модификация углерода с кристаллической решёткой типа вюрцита — лонсдейлит (а = 0,252 нм, с = 0,412 нм, пространственная группа Р63/mmc), плотность 3,51 г/см³, то есть такая же, как у алмаза. Лонсдейлит найден также в метеоритах.

Ультрадисперсные алмазы (наноалмазы)

В 1980-е годы в СССР было обнаружено, что в условиях динамической нагрузки углеродсодержащих материалов могут образовываться алмазоподобные структуры, получившие название ультрадисперсных алмазов (УДА). В настоящее время всё чаще применяется термин «наноалмазы». Размер частиц в таких материалах составляет единицы нанометров.

Условия образования УДА могут быть реализованы при детонации взрывчатых веществ со значительным отрицательным кислородным балансом, например, смесей тротила с гексогеном. Такие условия могут быть реализованы также при ударах небесных тел о поверхность Земли в присутствии углеродсодержащих материалов (органика, торф, уголь и пр.).

Так, в зоне падения Тунгусского метеорита в лесной подстилке были обнаружены УДА.

Карбин

Кристаллическая модификация углерода гексагональной сингонии с цепочечным строением молекул называется карбин. Цепи имеют либо полиеновое строение (−C≡C−), либо поликумуленовое (=C=C=).

Известно несколько форм карбина, отличающихся числом атомов в элементарной ячейке, размерами ячеек и плотностью (2,68—3,30 г/см³).

Карбин встречается в природе в виде минерала чаоита (белые прожилки и вкрапления в графите) и получен искусственно — окислительной дегидрополиконденсацией ацетилена, действием лазерного излучения на графит, из углеводородов или CCl4 в низкотемпературной плазме.

Карбин представляет собой мелкокристаллический порошок чёрного цвета (плотность 1,9—2 г/см³), обладает полупроводниковыми свойствами. Получен в искусственных условиях из длинных цепочек атомов углерода, уложенных параллельно друг другу.

Карбин — линейный полимер углерода. В молекуле карбина атомы углерода соединены в цепочки поочередно или тройными и одинарными связями (полиеновое строение), либо постоянно двойными связями (поликумуленовое строение). Это вещество впервые получено советскими химиками В. В. Коршаком, А. М. Сладковым, В. И.

 Касаточкиным и Ю. П. Кудрявцевым в начале 1960-х годов в Институте элементоорганических соединений Академии наук СССР. Карбин обладает полупроводниковыми свойствами, причём под воздействием света его проводимость сильно увеличивается. На этом свойстве основано первое практическое применение — в фотоэлементах.

Фуллерены и углеродные нанотрубки

Углерод известен также в виде кластерных частиц C60, C70, C80, C90, C100 и подобных (фуллерены), а также графенов, нанотрубок и сложных структур — астраленов.

Аморфный углерод (строение)

В основе строения аморфного углерода лежит разупорядоченная структура монокристаллического (всегда содержит примеси) графита. Это кокс, бурые и каменные угли, техуглерод, сажа, активный уголь.

Графен

Основная статья: Графен

Графен — двумерная аллотропная модификация углерода, образованная слоем атомов углерода толщиной в один атом, соединенных посредством sp² связей в гексагональную двумерную кристаллическую решётку.

Углеродное кольцо

В 2019 г. впервые синтезирован один экземпляр молекулы, представляющей собой кольцо из 18 атомов углерода. В нем чередуются одинарные и тройные химические связи.

Нахождение в природе

Было оценено, что Земля в целом состоит из 730 ppm углерода, с содержанием 2000 ppm в ядре и 120 ppm в мантии и коре. Так как масса Земли 5,972⋅1024 kg, то это предполагает наличие 4360 миллионов гигатонн углерода.

Свободный углерод находится в природе в виде алмаза и графита.

Основная масса углерода в виде природных карбонатов (известняки и доломиты), горючих ископаемых — антрацит (94—97 % С), бурые угли (64—80 % С), каменные угли (76—95 % С), горючие сланцы (56—78 % С), нефть (82—87 % С), горючих природных газов (до 99 % метана), торф (53—56 % С), а также битумы и др. В атмосфере и гидросфере находится в виде диоксида углерода CO2, в воздухе 0,046 % CO2 по массе, в водах рек, морей и океанов в ~60 раз больше. Углерод входит в состав растений и животных (~17,5 %).

В организм человека углерод поступает с пищей (в норме около 300 г в сутки). Общее содержание углерода в организме человека достигает около 21 % (15 кг на 70 кг массы тела). Углерод составляет 2/3 массы мышц и 1/3 массы костной ткани. Выводится из организма преимущественно с выдыхаемым воздухом (углекислый газ) и мочой (мочевина).

Кругооборот углерода в природе включает биологический цикл, выделение CO2 в атмосферу при сгорании ископаемого топлива, из вулканических газов, горячих минеральных источников, из поверхностных слоёв океанических вод, а также при дыхании, брожении, гниении. Биологический цикл состоит в том, что углерод в виде CO2 поглощается из тропосферы растениями в процессе фотосинтеза. Затем из биосферы он вновь возвращается в геосферу, частично через организмы животных и человека, и в виде CO2 — в атмосферу.

В парообразном состоянии и в виде соединений с азотом и водородом углерод обнаружен в атмосфере Солнца, планет, он найден в каменных и железных метеоритах.

Большинство соединений углерода, и прежде всего углеводороды, обладают ярко выраженным характером ковалентных соединений. Прочность простых, двойных и тройных связей атомов С между собой, способность образовывать устойчивые цепи и циклы из атомов С обусловливают существования огромного числа углеродсодержащих соединений, изучаемых органической химией.

В природе встречается минерал шунгит, в котором содержится как твёрдый углерод (≈25 %), так и значительные количества оксида кремния (≈35 %).

При обычных температурах углерод химически инертен, при достаточно высоких температурах соединяется со многими элементами, проявляет сильные восстановительные свойства. Химическая активность разных форм углерода убывает в ряду: аморфный углерод, графит, алмаз, на воздухе они воспламеняются при температурах соответственно выше 300—501 °C, 600—700 °C и 800—1000 °C.

Степень окисления бывает от −4 до +4. Сродство к электрону 1,27 эВ; энергия ионизации при последовательном переходе от С0 к С4+ соответственно 11,2604, 24,383, 47,871 и 64,19 эВ.

Неорганические соединения

Углерод реагирует с неметаллами при нагревании

Реакции с неметаллами РеагентУравнениеОписание
 O2 2C + O2 →to   2CO↑ 
2CO + O2   →to  2CO2↑ 
Продуктами горения углерода являются CO и CO2(монооксид углерода и диоксид углерода соответственно).

Известен также неустойчивый недооксид углерода C3O2 (температура плавления −111 °C, температура кипения 7 °C) и некоторые другие оксиды (например, C12O9, C5O2, C12O12). Углекислый газ реагирует с водой, образуя слабую угольную кислоту — H2CO3, которая образует соли — карбонаты.

 CO2 + H2O ↽ ⇀ H2CO3

На Земле наиболее широко распространены карбонаты кальция (минеральные формы — мел, мрамор, кальцит, известняк и др.) и магния (минеральная форма доломит).

 S 
 Se 
 C + S   →to   CS2 
 C + Se   →to   CSe2
При реакции углерода с серой получается сероуглерод CS2, известны также CS и C3S2.

Получен селенид углерода CSe2.

 H2 
 F2 
 C + 2H2   → to,P, cat   CH4↑ 
 C + 2F2 →>900oC CF4
Из углерода можно получить метан в присутствии оксидов железа, однако гораздо практичнее получать метан из синтез газа.

Графит и аморфный углерод начинают реагировать с водородом при температуре 1200 °C, с фтором при 900 °C.

 Si  C + Si →to  SiC При сплавлении получается карбид кремния.
 N2  2C + N2 →to (CN)2При пропускании электрического разряда между угольными электродами в атмосфере азота образуется циан.

При высоких температурах взаимодействием углерода со смесью H2 и N2 получают синильную кислоту:

 NH3 + CH4   →Pt   HCN + 3H2↑ 

Также такой же реакцией получают циан

 2NH3 + 2CH4 →Pt   (CN)2 + 7H2↑

 PНе реагирует

Графит с галогенами, щелочными металлами и др. веществами образует соединения включения.

Реакции со сложными веществами УравнениеОписание
 C + H2O →to  CO↑ + H2↑Важна в промышленности реакция углерода с водяным паром для получения синтез газа
 3C + S + 2KNO3  →to   K2S + 3CO2↑ + N2↑Горение чёрного пороха.
 5C + 4KNO3 →  2K2CO3 + 3CO2↑ + 2N2↑ 
 C + 2KNO3 →  2KNO2 + CO2↑ 
С калиевой селитрой углерод проявляет восстановительные свойства.
 3C + BaSO4 → BaS + 2CO↑ + CO2↑Восстанавливает сульфат бария
 C + MxOy   →to   M + CO↑ 
 C + CaO   → 2500oC   CaC2 + CO↑ 
При сплавлении углерод восстанавливает оксиды металлов до металлов. Данное свойство широко используется в металлургической промышленности.

С большинством металлов углерод образует карбиды, например:

 4Al + 3C   →t  Al4C3  Ca + 2C   →t  CaC2

Органические соединения

Способность углерода образовывать полимерные цепочки порождает огромный класс соединений на основе углерода, которых значительно больше, чем неорганических, и изучением которых занимается органическая химия. Среди них наиболее обширные группы: углеводороды, белки, жиры, углеводы и др.

Соединения углерода составляют основу земной жизни, а их свойства во многом определяют спектр условий, в которых подобные формы жизни могут существовать. По числу атомов в живых клетках доля углерода около 25 %, по массовой доле — около 18 %.

Применение

Графит используют в карандашной промышленности, но в смеси с глиной, для уменьшения его мягкости. Также его используют в качестве смазки при особо высоких или низких температурах.

Его невероятно высокая температура плавления позволяет делать из него тигли для заливки металлов.

Способность графита проводить электрический ток также позволяет изготавливать из него высококачественные электроды.

Алмаз благодаря исключительной твердости — незаменимый абразивный материал. Алмазным напылением обладают шлифовальные насадки бурмашин. Кроме этого, ограненные алмазы — бриллианты — используются в качестве драгоценных камней в ювелирных украшениях.

Благодаря редкости, высоким декоративным качествам и стечению исторических обстоятельств бриллиант неизменно является самым дорогим драгоценным камнем. Исключительно высокая теплопроводность алмаза (до 2000 Вт/м·К) делает его перспективным материалом для полупроводниковой техники в качестве подложек для процессоров.

Но относительно высокая себестоимость добычи алмазов ($97,47 за один карат) и сложность обработки алмаза ограничивают его применение в этой области.

В фармакологии и медицине широко используются различные соединения углерода — производные угольной кислоты и карбоновых кислот, различные гетероциклы, полимеры и другие соединения.

Так, карболен (активированный уголь), применяется для абсорбции и выведения из организма различных токсинов; графит (в виде мазей) — для лечения кожных заболеваний; радиоактивные изотопы углерода — для научных исследований (радиоуглеродный анализ).

Углерод играет огромную роль в жизни человека. Его применения столь же разнообразны, как сам этот многоликий элемент. В частности, углерод является неотъемлемой составляющей стали (до 2,14 % масс.) и чугуна (более 2,14 % масс.)

Углерод является основой всех органических веществ. Любой живой организм состоит в значительной степени из углерода. Углерод — основа жизни. Источником углерода для живых организмов обычно является CO2 из атмосферы или воды.

В результате фотосинтеза он попадает в биологические пищевые цепи, в которых живые существа поедают друг друга или останки друг друга и тем самым добывают углерод для строительства собственного тела.

Биологический цикл углерода заканчивается либо окислением и возвращением в атмосферу, либо захоронением в виде угля или нефти.

Углерод в виде ископаемого топлива: угля и углеводородов (нефть, природный газ) — один из важнейших источников энергии для человечества.

Токсическое действие

Углерод поступает в окружающую среду в составе выхлопных газов автотранспорта, при сжигании угля на ТЭС, при открытых разработках угля, подземной его газификации, получении угольных концентратов и др.

Концентрация углерода над источниками горения 100—400 мкг/м³, крупными городами 2,4—15,9 мкг/м³, сельскими районами 0,5 — 0,8 мкг/м³.

С газоаэрозольными выбросами АЭС в атмосферу поступает (6—15)⋅109 Бк/сут 14CO2.

Высокое содержание углерода в атмосферных аэрозолях ведет к повышению заболеваемости населения, особенно верхних дыхательных путей и легких.

Профессиональные заболевания — в основном антракоз и пылевой бронхит.

В воздухе рабочей зоны ПДК, мг/м³: алмаз 8,0, антрацит и кокс 6,0, каменный уголь 10,0, технический углерод и углеродная пыль 4,0; в атмосферном воздухе максимальная разовая 0,15, среднесуточная 0,05 мг/м³.

Токсическое действие 14C, вошедшего в состав биологических молекул (особенно в ДНК и РНК), определяется его радиационным взаимодействием с β-частицами (14C (β) → 14N), приводящим к изменению химического состава молекулы. Допустимая концентрация 14С в воздухе рабочей зоны ДКА 1,3 Бк/л, в атмосферном воздухе ДКБ 4,4 Бк/л, в воде 3,0⋅104 Бк/л, предельно допустимое поступление через органы дыхания 3,2⋅108 Бк/год.

Источник: https://chem.ru/uglerod.html

Vse-referaty
Добавить комментарий