Азот

Содержание
  1. Азот и его соединения
  2.   АзотN2
  3.    АммиакNH3
  4.   Монооксид азотаNO
  5. Диоксид азотаNO2
  6. Оксид диазотаN2O
  7. Триоксид диазотаN2O3
  8. Пентаоксид диазотаN2O5
  9.  Нитриты и нитраты
  10. Азот (Nitrogene, N)
  11. Физические свойства
  12. Химические свойства азота
  13. Получение азота
  14. Область применения
  15. Роль азота в биологии
  16. Урок №27. Положение азота и фосфора в периодической системе химических элементов, строение их атомов. Азот, физические и химические свойства, получение и применение. – ХиМуЛя.com
  17. Азот (N)
  18. N2
  19. Свойства молекулярного азота
  20. Получение и применение азота
  21. Азот
  22. Общая характеристика элементов Va группы
  23. Основное и возбужденное состояние азота
  24. Природные соединения
  25. Аммиак
  26. Соли аммония
  27. Оксид азота I – N2O
  28. Оксид азота II – NO
  29. Оксид азота III – N2O3
  30. Оксид азота IV – NO2
  31. АЗОТ
  32. Историческая справка
  33. Фиксация азота и азотный цикл
  34. Строение ядра и электронных оболочек
  35. Молекулярный азот
  36. Получение и применение
  37. Азот из атмосферы
  38. Лабораторные способы
  39. Химические свойства
  40. Нитриды
  41. Ионные нитриды
  42. Ковалентные нитриды
  43. Нитриды с промежуточным типом связи
  44. Водородные соединения азота
  45. Аммиак NH3
  46. Строение молекулы
  47. Cвойства аммиака
  48. Аммиак как растворитель
  49. Получение аммиака
  50. Химические свойства аммиака
  51. Гидразин
  52. Оксид азота(I)
  53. Оксид азота(II)
  54. Оксид азота(III)
  55. Оксид азота(IV)
  56. Оксид азота(V)
  57. Оксокислоты азота
  58. Гипоазотистая кислота
  59. Азотистая кислота

Азот и его соединения

Азот

Азот —  элемент 2-го периода  V А-группы Периодической системы,  порядковый номер 7. Электронная формула атома [2He]2s22p3, характерные степени окисления 0,-3, +3 и +5, реже +2 и +4 и др. состояние Nvсчитается относительно устойчивым.

Шкала степеней окисления у азота:
+5 —   N2O5, NO3, NaNO3, AgNO3

+4 —  NO2

+3 – N2O3, NO2, HNO2, NaNO2, NF3

+2 —  NO

+1 – N2O

0 —  N2

-3 — NH3, NH4, NH3 * H2O, NH2Cl, Li3N, Cl3N.

Азот обладает высокой электроотрицательностью (3,07), третий после F и O. Проявляет типичные неметаллические (кислотные) свойства, образуя при этом различные кислородсодержащие кислоты, соли и бинарные соединения, а так же катион аммония NH4 и его соли.

В природе – семнадцатый по химической распространенности элемент (девятый среди неметаллов). Жизненно важный элемент для всех организмов.

  Азот N2

Простое вещество. Состоит из неполярных молекул с очень устойчивой ˚σππ-связью N≡N, этим объясняется химическая инертность элемента при обычных условиях.

Бесцветный газ без вкуса и запаха, конденсируется в бесцветную жидкость (в отличие от O2).

составная часть воздуха 78,09% по объему, 75,52 по массе. Из жидкого воздуха азот выкипает раньше, чем кислород. Малорастворим в воде (15,4 мл/1 л H2O при 20 ˚C), растворимость азота меньше, чем у кислорода.

При комнатной температуре N2, реагирует с фтором и в очень малой степени – с кислородом:

 N2 + 3F2 = 2NF3,  N2 + O2  ↔ 2NO

Обратимая реакция получения аммиака протекает при температуре 200˚C, под давлением до 350 атм и обязательно в присутствии катализатора (Fe, F2O3, FeO, в лаборатории при Pt )

N2 + 3H2 ↔ 2NH3 + 92 кДж

В соответствии с принципом Ле-Шателье увеличение выхода аммиака должно происходить при повышении давления и понижении температуры. Однако скорость реакции при низких температурах очень мала, поэтому процесс ведут при 450-500 ˚C, достигая  15%-ного выхода аммиака. Непрориагировавшие  N2 и H2 возвращают в реактор  и тем самым увеличивают степень протекания реакции.

Азот химически пассивен по отношению к кислотам и щелочам, не поддерживает горения.

Получение в промышленности – фракционная дистилляция жидкого воздуха или удаление из воздуха кислорода химическим путем, например по реакции 2C(кокс) + O2 = 2CO при нагревании. В этих случаях получают азот, содержащий так же примеси благородных газов (главным образом аргон).

В лаборатории небольшие количества химически чистого азота можно получить по реакции конмутации при умеренном нагревании:

N-3H4N3O2(T) = N20 + 2H2O (60-70)

NH4Cl(p) + KNO2(p) = N20↑ + KCl +2H2O (100˚C)

Применяется для синтеза аммиака. Азотной кислоты и других азотсодержащих продуктов, как инертная среда проведения химических и металлургических процессов и хранения огнеопасных веществ.

   Аммиак NH3

Бинарное соединение , степень окисления азота равна – 3. Бесцветный газ с резким характерным запахом. Молекула имеет строение незавершенного тетраэдра [: N(H)3] (sp3-гибридизация).

Наличие у азота в молекуле NH3  донорской пары электронов на  sp3-гибридной орбитали обуславливает характерную реакцию присоединения катиона водорода, при этом образуется катион аммония NH4. Сжижается под избыточным давлением при комнатной температуре. В жидком состоянии ассоциирован за счет водородных связей.

Термически неустойчив. Хорошо растворим в воде (более 700 л/1 л H2O при 20˚C); доля в насыщенном растворе равна 34% по массе и  99% по объему, pH= 11,8.

Весьма реакционноспособный, склонен к реакциям присоединения. Сгорает в кислороде, реагирует с кислотами. Проявляет восстановительные (за счет N-3) и окислительные (за счет H+1) свойства. Осушается только оксидом кальция.

Качественные реакции – образование белого «дыма» при контакте с газообразным  HCl, почернение бумажки, смоченной раствором Hg2(NO3)2.

Промежуточный продукт при синтезе HNO3  и солей аммония. Применяется  в производстве соды, азотных удобрений, красителей, взрывчатых веществ; жидкий аммиак – хладагент. Ядовит.
Уравнения важнейших реакций:

2NH3(г) ↔ N2 + 3H2
NH3(г) + H2O  ↔ NH3 *  H2O (р)↔ NH4++ OH—
NH3(г) + HCl(г) ↔ NH4Cl(г) белый «дым»
4NH3 + 3O2 (воздух) = 2N2 + 6 H2O   (сгорание)
4NH3 + 5O2 =  4NO+ 6 H2O   (800˚C, кат.

Pt/Rh)
2 NH3 + 3CuO = 3Cu + N2  + 3 H2O   (500˚C)
2 NH3 + 3Mg = Mg3N2 +3 H2           (600 ˚C )
NH3(г) + CO2(г) + H2O = NH4HCO3    (комнатная температура, давление)
Получение.

  В лаборатории – вытеснение аммиака из солей аммония при нагревании с натронной известью:  Ca(OH)2 + 2NH4Cl = CaCl2+ 2H2O +NH3
Или кипячение водного раствора аммиака с последующим осушением газа.

  В промышленности аммиак получают из азота с водородом. Выпускается промышленностью либо в сжиженном виде, либо в виде концентрированного водного раствора под техническим названием аммиачная вода.

  Гидрат аммиака NH3 *H2O. Межмолекулярное соединение. Белый, в кристаллической решетке – молекулы  NH3 и H2O, связанные слабой водородной связью. Присутствует в водном растворе аммиака, слабое основание (продукты диссоциации – катион NH4 и анион OH).

Катион аммония имеет правильно-тетраэдрическое строение   (sp3-гибридизация). Термически неустойчив, полностью разлагается при кипячении раствора. Нейтрализуется сильными кислотами. Проявляет восстановительные свойства (за счет N-3) в концентрированном растворе.

Вступает в реакцию ионного обмена и комплексообразования.

   Качественная реакция – образование белого «дыма» при контакте с газообразным HCl. Применяется для создания слабощелочной среды в растворе, при осаждении амфотерных гидроксидов.

В 1 М растворе аммиака содержится в основном гидрат NH3 *H2O и лишь 0,4% ионов NH4  OH (за счет диссоциации гидрата); таким образом, ионный «гидроксид аммония NH4 OH» практически не содержится в растворе,  нет такого соединения и в твердом гидрате.

Уравнения важнейших реакций:

NH3 H2O (конц.)  = NH3↑ + H2O    (кипячение с NaOH)

NH3 H2O   + HCl (разб.)  = NH4Cl + H2O
3(NH3 H2O) (конц.)   + CrCl3 = Cr(OH)3↓ + 3 NH4Cl
8(NH3 H2O) (конц.)   + 3Br2(p) = N2↑ + 6 NH4Br + 8H2O (40-50˚C)
2(NH3 H2O) (конц.)   + 2KMnO4 = N2↑ + 2MnO2↓ + 4H2O + 2KOH
4(NH3 H2O) (конц.)    + Ag2O = 2[Ag(NH3)2]OH + 3H2O
4(NH3 H2O) (конц.)    + Cu(OH)2 + [Cu(NH3)4](OH)2 + 4H2O
6(NH3 H2O) (конц.)   + NiCl2 = [Ni(NH3)6]Cl2 + 6H2O
Разбавленный раствор аммиака (3-10%-ный) часто называют нашатырным спиртом (название придумано алхимиками), а концентрированный раствор (18,5 – 25%-ный) – аммиачный раствор (выпускается промышленностью).

  Монооксид азота NO

Несолеобразующий оксид. Бесцветный газ. Радикал, содержит ковалентную σπ-связь (N꞊O) , в твердом состоянии димер N2О2  со связью N-N. Чрезвычайно термически устойчив. Чувствителен к кислороду воздуха (буреет). Малорастворим в воде и не реагирует с ней.

Химически пассивен по отношению к кислотам и щелочам. При нагревании реагирует с металлами и неметаллами . весьма реакционноспособная смесь NO и NO2 («нитрозные газы»). Промежуточный продукт в синтезе азотной кислоты.Уравнения важнейших реакций:

2NO + O2(изб.

) = 2NO2    (20˚C)

2NO + C(графит) =  N2 +  CО2 (400- 500˚C)
10NO + 4P(красный) =  5N2 + 2P2O5 (150- 200˚C)
2NO + 4Cu = N2  + 2 Cu2O   (500- 600˚C)
Реакции на смеси  NO и  NO2:
NO + NO2  +H2O = 2HNO2(p)
NO + NO2  + 2KOH(разб.) = 2KNO2 + H2O
NO + NO2  +  Na2CO3 =  2Na2NO2  +  CО2 (450- 500˚C)
Получение в промышленности: окисление аммиака кислородом на катализаторе, в лаборатории  — взаимодействие разбавленной азотной кислоты с восстановителями:
8HNO3 + 6Hg = 3Hg2(NO3)2 + 2NO + 4 H2Oили восстановлении нитратов:

2NaNO2 + 2H2SO4 + 2NaI = 2NO↑ + I2↓ + 2 H2O + 2Na2SO4

Диоксид азота NO2

Кислотный оксид, условно отвечает двум кислотам — HNO2 и  HNO3 (кислота для N4 не существует). Бурый газ, при комнатной температуре мономер  NO2, на холоду жидкий бесцветный димер N2О4 (тетраоксид диазота).  Полностью реагирует с водой, щелочами.

Очень сильный окислитель, вызывает коррозию металлов. Применяется для синтеза азотной кислоты и безводных нитратов, как окислитель ракетного топлива, очиститель нефти от серы и катализатор окисления органических соединений. Ядовит.

Уравнение важнейших реакций:

2NO2 ↔ 2NO + O2

4NO2(ж) + H2O = 2HNO3 + N2О3 (син.)     (на холоду)
3 NO2 + H2O = 3HNO3 + NO↑
2NO2 + 2NaOH(разб.) = NaNO2 + NaNO3 + H2O
4NO2 + O2+ 2 H2O = 4 HNO3
4NO2 + O2 + KOH = KNO3 + 2 H2O
2NO2 + 7H2 = 2NH3 + 4 H2O   (кат. Pt, Ni)
NO2 + 2HI(p) = NO↑ + I2↓ + H2O
NO2 + H2O + SO2 = H2SO4 + NO↑   (50- 60˚C)
NO2  + K = KNO2
6NO2 + Bi(NO3)3 + 3NO   (70- 110˚C)
  Получение:  в промышленности —   окислением NO  кислородом воздуха, в лаборатории – взаимодействие концентрированной азотной кислоты с восстановителями:
6HNO3 (конц.,гор.) + S = H2SO4 + 6NO2↑ + 2H2O
5HNO3 (конц.,гор.) + P (красный) = H3PO4  + 5NO2 ↑ + H2O
2HNO3 (конц.,гор.) +  SO2 = H2SO4  + 2 NO2 ↑

Оксид диазота N2O

Бесцветный газ с приятным запахом («веселящий газ»), N꞊N꞊О, формальная степень окисления азота +1, плохо растворим в воде. Поддерживает горение графита и магния:

2N2O + C = CO2 + 2N2   (450˚C)
N2O + Mg = N2 + MgO (500˚C)Получают термическим разложением нитрата аммония:

NH4NO3 = N2O + 2 H2O (195- 245˚C)

применяется в медицине, как анастезирующее средство.

Триоксид диазота N2O3

При низких температурах –синяя жидкость, ON꞊NO2, формальная степень окисления азота +3. При 20 ˚C  на 90% разлагается на смесь бесцветного NO  и  бурого NO2 («нитрозные газы», промышленный дым – «лисий хвост»).

  N2O3 – кислотный оксид, на холоду с водой образует HNO2 , при нагревании реагирует иначе:
3N2O3 + H2O = 2HNO3 + 4NO↑
Со щелочами дает соли HNO2, например NaNO2.
Получают взаимодействием  NO c O2 (4NO + 3O2 = 2N2O3) или с NO2 (NO2 + NO = N2O3)
при сильном охлаждении.

«Нитрозные газы» и экологически опасны, действуют как катализаторы разрушения озонового слоя атмосферы.

Пентаоксид диазотаN2O5

Бесцветное,  твердое вещество, O2N – O – NO2, степень окисления  азота равна +5. При комнатной температуре за 10 ч разлагается на NO2 и O2.

Реагирует с водой и щелочами как кислотный оксид:
N2O5 + H2O = 2HNO3
N2O5 + 2NaOH = 2NaNO3 + H2
Получают дегидротацией дымящейся азотной кислоты:
2HNO3  + P2O5 = N2O5 + 2HPO3
или окислением NO2 озоном при  -78˚C:
2NO2 + O3 = N2O5 + O2

 Нитриты и нитраты

Нитрит калия KNO2.  Белый, гигроскопичный. Плавится без разложения. Устойчив в сухом воздухе. Очень хорошо растворим в воде (образуя бесцветный раствор), гидролизуется по аниону. Типичный окислитель и восстановитель в кислотной среде, очень медленно реагирует в щелочной среде. Вступает в реакции ионного обмена.

Качественные реакции на ион NO2— обесцвечивание фиолетового раствора MnO4  и появление черного осадка при добавлении ионов I. Применяется в производстве красителей, как аналитический реагент на аминокислоты и йодиды, компонент фотографических реактивов.уравнение важнейших реакций:

2KNO2(т)  + 2HNO3(конц.) = NO2↑ + NO↑ + H2O  + 2KNO3
2KNO2 (разб.)+ O2(изб.

) → 2KNO3 (60-80 ˚C)
KNO2  + H2O + Br2 = KNO3  + 2HBr

5NO2— + 6H+  + 2MnO4— (фиол.) = 5NO3—   + 2Mn2+ (бц.) + 3H2O
3 NO2—  + 8H+ + CrO72- = 3NO3— + 2Cr3+ + 4H2O
NO2—(насыщ.) + NH4+(насыщ.)=  N2↑ +  2H2O
2NO2—  + 4H+ + 2I—(бц.) = 2NO↑ + I2(черн.) ↓ = 2H2O
NO2—(разб.) + Ag+ = AgNO2 (светл.желт.)↓
Получение впромышленности – восстановлением калийной селитры в процессах:
KNO3 + Pb = KNO2  + PbO (350-400˚C)
KNO3 (конц.) + Pb(губка) + H2O = KNO2+ Pb(OH)2↓
3 KNO3 + CaO + SO2 = 2 KNO2  + CaSO4 (300 ˚C)

Hитраткалия KNO3
Техническое название калийная, или индийская соль, селитра. Белый, плавится без разложения при дальнейшем нагревании разлагается. Устойчив на воздухе.

Хорошо растворим в воде (с высоким эндо-эффектом, = -36 кДж), гидролиза нет. Сильный окислитель при сплавлении (за счет выделения атомарного кислорода). В растворе восстанавливается только атомарным водородом (в кислотной среде до KNO2, в щелочной среде до NH3).

Применяется в производстве стекла, как консервант пищевых продуктов, компонент пиротехнических смесей и минеральных удобрений.

2KNO3 = 2KNO2  +  O2                                                             (400- 500 ˚C)

KNO3 + 2H0 (Zn, разб. HCl) = KNO2 + H2O     

KNO3 + 8H0 (Al, конц. KOH) = NH3↑ + 2H2O + KOH     (80 ˚C)

KNO3 + NH4Cl = N2O↑ + 2H2O + KCl                 (230- 300 ˚C)

2 KNO3 + 3C (графит) + S = N2 + 3CO2 + K2S   (сгорание)

KNO3 + Pb = KNO2 + PbO                                    (350 — 400  ˚C)

KNO3 + 2KOH + MnO2 = K2MnO4 + KNO2 + H2O                                    (350 — 400  ˚C)

Получение: в промышленности
4KOH (гор.) + 4NO2  + O2  = 4KNO3 +  2H2O

и в лаборатории:
KCl + AgNO3 = KNO3 + AgCl↓

Азот — характеристика элемента, физические и химические свойства простого вещества. Аммиак, соли аммония.
Азотная кислота — строение и химические свойства

Источник: http://himege.ru/azot-i-ego-soedineniya/

Азот (Nitrogene, N)

Азот

Такие соединения, как аммиак, селитра, азотная кислота, были известны и применялись на практике задолго до получения чистого азота в свободном состоянии.

Во время эксперимента, проведенного в 1772 году, Даниель Резерфорд сжигал фосфор и прочие вещества в колоколе из стекла. Он выяснил, что газ, остающийся после сгорания соединений, не поддерживает горения и дыхания, и назвал его «удушливым воздухом».

В 1787 году Антуан Лавуазье установил, что газы, входящие в состав обычного воздуха, — это простые химические элементы, и предложил название «Азот». Чуть позже (в 1784 г.

) физик Генри Кавендиш доказал, что это вещество входит в состав селитры (группы нитратов). Отсюда происходит латинское название азота (от позднелатинского nitrum и греческого gennao), предложенное Ж.

А. Шапталем в 1790 году.

К началу XIX века учеными были выяснены химическая инертность элемента в свободном состоянии и его исключительная роль в соединениях с другими веществами. С этого момента «связывание» азота воздуха стало важнейшей технической проблемой химии.

Физические свойства

Азот немного легче воздуха. Его плотность составляет 1,2506 кг/м³ (0 °С, 760 мм рт. ст.), температура плавления — -209,86 °С, кипения — -195,8 °С. Азот с трудом сжижается.

Его критическая температура относительно низка (-147,1 °С), при этом критическое давление довольно высоко — 3,39 Мн/м². Плотность в жидком состоянии — 808 кг/м³.

В воде этот элемент менее растворим, чем кислород: в 1 м³ (при 0 °С) Н₂О может раствориться 23,3 г N. Этот показатель выше при работе с некоторыми углеводородами.

Химические свойства азота

При нагревании до невысоких температур этот элемент взаимодействует только с активными металлами. Например, с литием, кальцием, магнием. С большинством других веществ азот вступает в реакцию в присутствии катализаторов и/или при высокой температуре.

Хорошо изучены соединения N с О₂ (кислородом) N₂O₅, NO, N₂O₃, N₂O, NO₂. Из них при взаимодействии элементов (t — 4000 °С) образуется оксид NO. Далее в процессе охлаждения он окисляется до NO₂. Оксиды азота образуются в воздухе при прохождении атмосферных разрядов. Их можно получить действием ионизирующих излучений на смесь N с О₂.

При растворении в воде N₂O₃ и N₂O₅ соответственно получаются кислоты HNO₂ и HNO₂, образующие соли — нитраты и нитриты.

Азот соединяется с водородом исключительно в присутствии катализаторов и при высокой температуре, образуя NH₃ (аммиак).

Кроме того, известны и другие (они довольно многочисленны) соединения N с H₂, к примеру диимид HN = NH, гидразин H₂N-NH₂, октазон N₈H₁₄, кислота HN₃ и другие.

Стоит сказать, что большинство соединений водород + азот выделены исключительно в виде органических производных. Этот элемент не взаимодействует (непосредственно) с галогенами, поэтому все его галогениды получают только косвенным путем. К примеру, NF₃ образуется при взаимодействии аммиака с фтором.

Большинство галогенидов азота — малостойкие соединения, более устойчивы оксигалогениды: NOBr, NO₂F, NOF, NOCl, NO₂Cl. Непосредственного соединения N с серой также не происходит, N₄S₄ получается в процессе реакции аммиак + жидкая сера.

Во время взаимодействия раскаленного кокса с N образуется циан (CN)₂. В процессе нагревания ацетилена С₂Н₂ с азотом до 1500 °С можно получить цианистый водород HCN.

При взаимодействии N с металлами при относительно высоких температурах образуются нитриды (к примеру, Mg₃N₂).

При воздействии на обычный азот электроразрядов [при давлении 130–270 н/м² (соответствует 1–2 мм рт. cт.

)] и при разложении Mg₃N₂, BN, TiNx и Ca₃N₂, а также при электроразрядах в воздухе может быть образован активный азот, обладающий повышенным запасом энергии.

Он, в отличие от молекулярного, весьма энергично взаимодействует с водородом, парами серы, кислородом, некоторыми металлами и фосфором.

Азот входит в состав довольно многих важнейших органических соединений, в том числе — аминокислот, аминов, нитросоединений и прочих.

Получение азота

В лаборатории этот элемент может быть легко получен в процессе нагревания концентрированного раствора нитрита аммония (формула: NH₄NO₂ = N₂ + 2H₂O). Технический метод получения N основан на разделении заранее сжиженного воздуха, который в дальнейшем подвергается разгонке.

Область применения

Основная часть получаемого свободного азота используется при промышленном производстве аммиака, который потом в довольно больших количествах перерабатывается на удобрения, взрывчатые вещества и т. п.

Кроме прямого синтеза NH₃ из элементов, применяется разработанный в начале прошлого века цианамидный метод. Он основан на том, что при t = 1000 °С карбид кальция (образованный накаливанием смеси угля и извести в электропечи) реагирует со свободным азотом (формула: СаС₂ + N₂ = CaCN₂ + С). Полученный цианамид кальция под действием разогретого водяного пара разлагается на CaCO₃ и 2NH₃.

В свободном виде данный элемент применяется во многих отраслях промышленности: в качестве инертной среды при разнообразных металлургических и химических процессах, при перекачке горючих жидкостей, для заполнения пространства в ртутных термометрах и т. д. В жидком состоянии он используется в различных холодильных установках. Его транспортируют и хранят в стальных сосудах Дьюара, а сжатый газ — в баллонах.

Широко применяют и многие соединения азота. Их производство стало усиленно развиваться после Первой мировой войны и на данный момент достигло поистине огромных масштабов.

Роль азота в биологии

Это вещество является одним из основных биогенных элементов и входит в состав важнейших элементов живых клеток — нуклеиновых кислот и белков. Однако количество азота в живых организмах невелико (примерно 1–3 % на сухую массу). Имеющийся в атмосфере молекулярный материал усваивают лишь сине-зеленые водоросли и некоторые микроорганизмы.

Довольно большие запасы этого вещества сосредоточены в почве в виде различных минеральных (нитраты, аммонийные соли) и органических соединений (в составе нуклеиновых кислот, белков и продуктов их распада, включая еще не полностью разложившиеся остатки флоры и фауны).

Растения отлично усваивают азот из грунта в виде органических и неорганических соединений. В природных условиях большое значение имеют особые почвенные микроорганизмы (аммонификаторы), которые способны минерализировать органический N почвы до солей аммония.

Нитратный азот грунта образуется в процессе жизнедеятельности нитрифицирующих бактерий, открытых С. Виноградским в 1890 году. Они окисляют аммонийные соли и аммиак до нитратов. Часть усвояемого флорой и фауной вещества теряется из-за воздействия денитрифицирующих бактерий.

Микроорганизмы и растения отлично усваивают как нитратный, так и аммонийный N. Они активно превращают неорганический материал в различные органические соединения — аминокислоты и амиды (глутамин и аспарагин).

Последние входят в состав многих белков микроорганизмов, растений и животных.

Синтез аспарагина и глутамина путем амидирования (ферментативного) аспарагиновой и глутаминовой кислот осуществляется многими представителями флоры и фауны.

Производство аминокислот происходит при помощи восстановительного аминирования ряда кетокислот и альдегидокислот, возникающих путем ферментативного переаминирования, а также в результате окисления различных углеводов. Конечными продуктами усвоения аммиака (NH₃) растениями и микроорганизмами являются белки, которые входят в состав ядра клеток, протоплазмы, а также откладываются в виде так называемых запасных белков.

Человек и большинство животных могут синтезировать аминокислоты лишь в довольно ограниченной мере. Они не способны производить восемь незаменимых соединений (лизин, валин, фенилаланин, триптофан, изолейцин, лейцин, метионин, треонин), и потому для них главным источником азота являются потребляемые с пищей белки, то есть, в конечном счете, — собственные белки микроорганизмов и растений.

Источник: https://www.niikm.ru/articles/element_articles/nitrogenium/

Урок №27. Положение азота и фосфора в периодической системе химических элементов, строение их атомов. Азот, физические и химические свойства, получение и применение. – ХиМуЛя.com

Азот

Общая характеристика химическихэлементов подгруппы азота

Подгруппа азота (пниктогены) – V группа, главная подгруппа «А» – азот, фосфор, мышьяк, сурьма, висмут.

НАХОЖДЕНИЕ В ПРИРОДЕ
в земной коре: азот – 0,01%, фосфор – 0,08%, мышьяк – 0,0006%, сурьма – 0,0004%, висмут – 0,00002%

 Свойства элементов V-A подгруппы

ЭлементАзот NФосфор РМышьяк AsСурьма SbВисмут Bi
Свойство
Порядковый номер элемента715335183
Относительная атомная масса14,00730,97474,922121,75208,980
Температура плавления,С0-21044,1 (белый)817 (4МПа)631271
Температура кипения,С0-196280 (белый)61313801560
Плотность г/см30,96 (твёрдый)1,82 (белый)5,726,689,80
Степени окисления+5, +3,-3+5, +3,-3+5, +3,-3+5, +3,-3+5, +3,-3

1. Строение атомов химическихэлементов

НазваниехимическогоэлементаСхема строения атомаЭлектронное строение последнего энергоуровняФормула высшего оксида R2O5Формула летучего водородного соединенияRH3
1. АзотN+7)2)5…2s22p3N2O5NH3
2. ФосфорP+15)2)8)5…3s23p3P2O5PH3
3. МышьякAs+33)2)8)18)5…4s24p3As2O5AsH3
4. СурьмаSb+51)2)8)18)18)5…5s25p3Sb2O5SbH3
5. ВисмутBi+83)2)8)18)32)18)5…6s26p3Bi2O5BiH3

Наличие трехнеспаренных электронов на внешнем энергетическом уровне объясняет то, что внормальном, невозбужденном состоянии валентность элементов подгруппы азотаравна трем.

У атомовэлементов подгруппы азота (кроме азота – внешний уровень азота состоит толькоиз двух подуровней – 2s и 2p) на внешних энергетических уровнях имеютсявакантные ячейки d-подуровня, поэтому они могут распарить один электрон сs-подуровня и перенести его на d-подуровень. Таким образом, валентностьфосфора, мышьяка, сурьмы и висмута равна 5.

Элементы группыазота образуют с водородом соединения состава RH3, а с кислородомоксиды вида – R2O3 и R2O5. Оксидамсоответствуют кислоты HRO2 и HRO3 (и ортокислоты H3PO4,кроме азота). 

Высшая степень окисления этих элементов равна +5, а низшая -3. 

Так как заряд ядра атомов увеличивается, числоэлектронов на внешнем уровне постоянно, число энергетических уровней в атомахрастёт и радиус атома увеличивается от азота к висмуту, притяжениеотрицательных электронов к положительному ядру ослабевает и  способность к отдаче электроновувеличивается, и, следовательно, в подгруппе азота с ростом порядкового номеранеметаллические свойства убывают, а металлические усиливаются.

Азот- неметалл, висмут – металл. От азота к висмуту прочность соединений RH3уменьшается, а прочность кислородных соединений возрастает.

Наибольшее значение средиэлементов подгруппы азота имеют азот ифосфор .

Азот, физические и химические свойства, получение и применение

1. Азот – химическийэлемент

N +7)2)5

1s22s22p3 незавершённый внешний уровень, p-элемент, неметалл

Ar(N)=14

2. Возможные степениокисления

Из-за наличия трёхнеспаренных электронов азот очень активен, находится только в виде соединений.Азот проявляет в соединениях степени окисления от «-3» до «+5»

3. Азот – простоевещество, строение молекулы, физические свойства

Азо́т (от греч. ἀζωτος — безжизненный, лат. Nitrogenium), вместо предыдущих названий(«флогистированный», «мефитический» и «испорченный» воздух) предложил в 1787 году АнтуанЛавуазье.

Как показано выше, в то время уже было известно, что азот не поддерживаетни горения, ни дыхания. Это свойство и сочли наиболее важным.

Хотя впоследствиивыяснилось, что азот, наоборот, крайне необходим для всех живых существ,название сохранилось во французском и русском языках.

N2 – ковалентная неполярная связь, тройная(σ, 2π), молекулярная кристаллическая решётка

Тройная связьЭнергиясвязи945 кДж/моль

Вывод:

1. Малая реакционнаяспособность при обычной температуре

2. Газ, без цвета,запаха, легче воздуха

Mr(Bоздуха)/Mr(N2) = 29/28

4. Химические свойстваазота

N – окислитель ( 0 → -3)N – восстановитель (0 → +5)
1. С металлами образуются нитриды MxNyпри нагревании с Mg и щелочно-земельными и щелочными: 3Сa + N2 = Ca3N2 (при t)- c Li при к t комнатнойНитриды разлагаются водойСа3N2 + 6H2O = 3Ca(OH)2 + 2NH32. С водородом3H2+N2  ↔ 2NH3 (условия – T, p, kat)N2 + O2  ↔ 2 NO – Q  (при t= 2000 C)Азот не реагирует с серой, углеродом, фосфором, кремнием и некоторыми другими неметаллами.

5. Получение:

В промышленности азот получают из воздуха. Для этоговоздух сначала охлаждают, сжижают, а жидкий воздух подвергают перегонке(дистилляции).

Температура кипения азота немного ниже (–195,8°C), чем другогокомпонента воздуха — кислорода (–182,9°C), поэтому при осторожном нагреваниижидкого воздуха азот испаряется первым. Потребителям газообразный азотпоставляют в сжатом виде (150 атм.

или 15 МПа) в черных баллонах, имеющихжелтую надпись «азот». Хранят жидкий азот в сосудах Дьюара.

В лаборатории чистый («химический») азот получаютдобавляя при нагревании насыщенный раствор хлорида аммония NH4Cl ктвердому нитриту натрия NaNO2:

NaNO2 + NH4Cl = NaCl + N2+ 2H2O.

Можно также нагреватьтвердый нитрит аммония:

NH4NO2 = N2 + 2H2O. ОПЫТ

6. Применение:

В промышленности газазот используют главным образом для получения аммиака.

Как химически инертныйгаз азот применяют для обеспечения инертной среды в различных химических иметаллургических процессах, при перекачке горючих жидкостей.

Жидкий азот широкоиспользуют как хладагент, его применяют в медицине, особенно в косметологии.Важное значение в поддержании плодородия почв имеют азотные минеральныеудобрения.

7. Биологическая роль

Азот является элементом, необходимым для существования животных и растений,он входит в состав белков (16—18 % по массе), аминокислот, нуклеиновых кислот,нуклеопротеидов, хлорофилла, гемоглобинаи др.

В составе живых клеток по числу атомов азотаоколо 2%, по массовой доле – около 2,5 % (четвертое место после водорода,углерода и кислорода).

В связи с этим значительное количество связанного азотасодержится в живых организмах, «мёртвой органике» и дисперсном веществе морей иокеанов. Это количество оценивается примерно в 1,9·1011 т.

Врезультате процессов гниения и разложения азотсодержащей органики, при условииблагоприятных факторов окружающей среды, могут образоваться природные залежиполезных ископаемых, содержащие азот, например, «чилийская селитра» (нитрат натрия спримесями других соединений), норвежская, индийская селитры.

Тренажёр №1 “Простое вещество азот”

Тренажёр №2 “Характеристика азота по положениюв Периодической системе элементов Д. И. Менделеева”

Задания для закрепления

№1.  Осуществитепревращения по схеме:
N2→Li3N→NH3

№2.  Составьте уравнения реакциивзаимодействия азота с кислородом, магнием и водородом. Для каждой реакциисоставьте электронный баланс, укажите окислитель и восстановитель.

№3. В одном цилиндре находится газ азот, в другом -кислород, а в третьем – углекислый газ. Как различить эти газы?

№4. В некоторых горючих газах содержится в виде примеси свободный азот. Можетли при сгорании таких газов в обыкновенных газовых плитах образоваться оксидазота (II). Почему?

Источник: https://www.sites.google.com/site/himulacom/zvonok-na-urok/9-klass---vtoroj-god-obucenia/urok-no27-polozenie-azota-i-fosfora-v-periodiceskoj-sisteme-himiceskih-elementov-stroenie-ih-atomov-azot-fiziceskie-i-himiceskie-svojstva-polucenie-i-primenenie

Азот (N)

Азот

  • Обозначение – N (Nitrogen);
  • Период – II;
  • Группа – 15 (Va);
  • Атомная масса – 14,00674;
  • Атомный номер – 7;
  • Радиус атома = 92 пм;
  • Ковалентный радиус = 75 пм;
  • Распределение электронов – 1s22s22p3;
  • t плавления = -209,86°C;
  • t кипения = -195,8°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 3,04/3,07;
  • Степень окисления: +5, +4, +3, +2, +1, 0, -1, -2, -3;
  • Плотность (н. у.) = 0,808 г/см3 (-195,8°C);
  • Молярный объем = 17,3 см3/моль.

Соединения азота:

Однозначано назвать ученого, который первым открыл азот не представляется возможным по той простой причине, что это практически одновременно сделали в 1772 году сразу трое – Генри Кавендиш, Джозеф Пристли и Даниэль Резерфорд (еще к этому списку можно причислить и Карла Шееле). Однако, ни один из ученых в свое время так и не понял до конца своего открытия. Многие “пальму первенства” отдают шотландцу Даниэлю Резерфорду, поскольку он первым опубликовал магистерскую диссертацию, в которой описал основные свойства “испорченного воздуха”.

Собственно название “азот” было предложено в 1787 году А. Лавуазье.

Азот является четвертым самым распространенным химическим элементом Солнечной системы (после водорода, гелия и кислорода). Азот является одним из самых распространенных элементов на Земле:

  • в земной атмосфере азота содержится 3,87·1018 кг – 75,6% (по массе) или 78,08% (по объему);
  • в земной коре азота содержится (0,7—1,5)·1018 кг;
  • в земной мантии азота содержится 1,3·1019 кг;
  • в гидросфере азота содержится 2·1016 кг (7·1014 кг в виде соединений).

Азот играет важнейшую роль в жизнедеятельности организмов – он присутствует в белках, аминокислотах, аминах, нуклеиновых кислотах.

Природный азот состоит из двух стабильных изотопов 14N — 99,635% и 15N — 0,365%.

Азот в Периодической таблице химических элементов Д. И. Менделеева, стоит под номером “7”, относится к 15(Va) группе (См. Атомы 15(Va) группы).

Атом азота содержит 7 электронов, которые располагаются на двух орбиталях (s и p) (см. Электронная структура атомов). На внутренней орбитали расположены 2 электрона; на внешней – 5 (одна свободная электронная пара + три неспаренных электрона, которые могут образовывать три ковалентные связи; см. Ковалентная связь).

Вступая в реакции с другими химическими элементами, атом азота может проявлять степень окисления от +5 до -3 (кроме трех валентных электронов еще одна связь может образовываться по донорно-акцепторному механизму за счет свободной электронной пары с атомом, имеющим свободную орбиталь).

Степени окисления азота:

  • +5 – HNO3;
  • +4 – NO2;
  • +3 – HNO2;
  • +2 – NO;
  • +1 – N2O;
  • -1 – NH2OH;
  • -2 – N2H4;
  • -3 (самая распространенная) – NH3.

N2

Три неспаренных р-электрона атома азота, лежащие на его внешнем энергетическом уровне, имеют форму равноплечей восьмерки, располагаясь перпендикулярно друг к другу:

При образовании молекулы азота (N2) p-орбиталь, расположенная по оси X, одного атома, перекрывается с аналогичной px-орбиталью другого атома – в месте пересечения орбиталей образуется повышенная электронная плотность с формирование ковалентной связи (σ-связь).

Две другие орбитали одного атома, расположенные по осям Y и Z, перекрываются боковыми поверхностями со своими “собратьями” другого атома, образуя еще две ковалентные связи (π-связи).

В итоге, в молекуле азота (N2) образуются 3 ковалентные связи (две π-связи + одна σ-связь), т. е., возникает очень прочная тройная связь (см. Множественные связи).

Молекула азота очень прочная (энергия диссоциации 940 кДж/моль), обладает низкой реакционной способностью.

Свойства молекулярного азота

В нормальных условиях азот является малоактивным веществом, что объясняется достаточно прочными межатомарными связями в его молекуле, поскольку образованы они аж тремя парами электронов. По этой причине, обычно азот вступает в реакции при высоких температурах.

Азот:

  • газ без запаха и цвета;
  • плохо растворим в воде;
  • растворим в органических растворителях;
  • может реагировать с металлами и неметаллами при нагревании в присутствии катализатора (под воздействием ионизирующего облучения);
  • азот вступает в реакции как окислитель (исключение составляют кислород и фтор):
    • при нормальных условиях азот реагирует только с литием: 6Li + N2 = 2Li3N;
    • при нагревании азот реагирует с металлами: 2Al + N2 = 2AlN;
    • при температуре 500°C и при высоком давлении в присутствии железа азот реагирует с водородом: N2 + 3H2 ↔ 2NH3;
    • при температуре 1000°C азот реагирует с кислородом, бором, кремнием: N2 + O2 ↔ 2NO.
  • азот взаимодействует, как восстановитель:
    • с кислородом: N20+O20 ↔ 2N+2O-2 (оксид азота II)
    • с фтором: N20+3F20 = 2N+3F3-1 (фторид азота III)

Получение и применение азота

Получение азота:

  • промышленным способом азот получают сжижением воздуха с последующим отделением азота путем испарения;
  • лабораторные способы получения азота:
    • разложением нитрита аммония: NH4NO2 = N2 + 2H2O;
    • восстановлением азотной кислоты активными металлами: 36HNO3 + 10Fe = 10Fe(NO3)3 + 3N2 + 18H2O;
    • разложением азидов металлов (чистый азот): 2NaN3 → (t) 2Na + 3N2;
    • атмосферный азот получают реагированием воздуха с раскаленным коксом: O2 + 4N2 + 2C → 2CO + 4N2;
    • пропусканием аммиака над оксидом меди (II) при t=700°C: 2NH3 + 3CuO → N2 + 3H2O + 3Cu.

Применение азота:

  • создание инертных сред в металлургии;
  • синтез аммиака и азотной кислоты;
  • производство взрывчатых веществ;
  • для создания низких температур;
  • производство минеральных удобрений: калийная селитра (KNO3); натриевая селитра (NaNO3); аммонийная селитра (NH4NO3); известковая селитра (Ca(NO3)2).

Источник: https://prosto-o-slognom.ru/chimia/504_azot_N.html

Азот

Азот

Азот – неметаллический элемент Va группы периодической таблицы Д.И. Менделеева. Составляет 78% воздуха. Входит в состав белков, являющихся важной частью живых организмов.

Температура кипения азота составляет -195,8 °C. Однако быстрого замораживания объектов, которое часто демонстрируют в кинофильмах, не происходит. Даже для заморозки растения нужно продолжительное время, это связано с низкой теплоемкостью азота.

Общая характеристика элементов Va группы

От N к Bi (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Азот, фосфор и мышьяк являются неметаллами, сурьма – полуметалл, висмут – металл.

Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns2np3:

  • N – 2s22p3
  • P – 3s23p3
  • As – 4s24p3
  • Sb – 5s25p3
  • Bi – 6s26p3

Основное и возбужденное состояние азота

При возбуждении атома азота электроны на s-подуровне распариваются и переходят на p-подуровень. Поскольку азот находится во втором периоде, то 3ий уровень у него отсутствует, что проявляется в особенностях электронной конфигурации возбужденного состояния.

Сравнивая возможности перемещения электронов у азота и фосфора, разница становится очевидна.

Природные соединения

В природе азот встречается в виде следующих соединений:

  • Воздух – во вдыхаемом нами воздухе содержится 78% азота
  • Азот входит в состав нуклеиновых кислот, белков
  • KNO3 – индийская селитра, калиевая селитра
  • NaNO3 – чилийская селитра, натриевая селитра
  • NH4NO3 – аммиачная селитра (искусственный продукт, в природе не встречается)

Селитры являются распространенными азотными удобрениями, которые обеспечивают быстрый рост и развитие растений, повышают урожайность. Однако, следует строго соблюдать правила их применения, чтобы не превысить допустимые концентрации.

Получение

В промышленности азот получают путем сжижения воздуха. В дальнейшем путем испарения их сжиженного воздуха получают азот.

Применяют и метод мембранного разделения, при котором через специальный фильтр из сжатого воздуха удаляют кислород.

В лаборатории методы не столь экзотичны. Чаще всего получают азот разложением нитрита аммония

NH4NO2 → (t) N2 + H2O

Также азот можно получить путем восстановления азотной кислоты активными металлами.

HNO3(разб.) + Zn → Zn(NO3)3 + N2 + H2O

Химические свойства

Азот восхищает – он принимает все возможные для себя степени окисления от -3 до +5.

Молекула азота отличается большой прочностью из-за наличия тройной связи. Вследствие этого многие реакции эндотермичны: даже горение азота в кислороде сопровождается поглощением тепла, а не выделением, как обычно бывает при горении.

  • Реакция с металлами
  • Без нагревания азот взаимодействует только с литием. При нагревании реагирует и с другими металлами.N2 + Li → Li3N (нитрид лития)N2 + Mg → (t) Mg3N2N2 + Al → (t) AlN

  • Реакция с неметаллами
  • Важное практическое значение имеет синтез аммиака, который применяется в дальнейшим при изготовлении удобрений, красителей, лекарств.N2 + H2 ⇄ (t, p) NH3

Аммиак

Бесцветный газ с резким едким запахом, раздражающим слизистые оболочки. Раствор концентрацией 10% аммиака применяется в медицинских целях, называется нашатырным спиртом.

Получение

В промышленности аммиак получают прямым взаимодействием азота и водорода.

N2 + H2 ⇄ (t, p) NH3

В лабораторных условиях сильными щелочами действуют на соли аммония.

NH4Cl + NaOH → NH3 + NaCl + H2O

Химические свойства

Аммиак проявляет основные свойства, окрашивает лакмусовую бумажку в синий цвет.

  • Реакция с водой
  • Образует нестойкое соединение – гидроксид аммония, слабое основание. Оно сразу же распадается на воду и аммиак.NH3 + H2O ⇄ NH4OH

  • Основные свойства
  • Как основание аммиак способен реагировать с кислотами с образованием солей.NH3 + HCl → NH4Cl (хлорид аммония)NH3 + HNO3 → NH4NO3 (нитрат аммония)

  • Восстановительные свойства
  • Поскольку азот в аммиаке находится в минимальной степени окисления -3 и способен только ее повышать, то аммиак проявляет выраженные восстановительные свойства. Его используют для восстановления металлов из их оксидов.NH3 + FeO → N2↑ + Fe + H2ONH3 + CuO → N2↑ + Cu + H2OГорение аммиака без катализатора приводит к образованию азота в молекулярном виде. Окисление в присутствии катализатора сопровождается выделением NO.NH3 + O2 → (t) N2 + H2ONH3 + O2 → (t, кат) NO + H2O

Соли аммония

Получение

NH3 + H2SO4 → NH4HSO4 (гидросульфат аммония, избыток кислоты)

3NH3 + H3PO4 → (NH4)3PO4

Химические свойства

Помните, что по правилам общей химии, если по итогам реакции выпадает осадок, выделяется газ или образуется вода – реакция идет.

  • Реакции с кислотами
  • NH4Cl + H2SO4 → (NH4)2SO4 + HCl↑

  • Реакции с щелочами
  • В реакциях с щелочами образуется гидроксид аммония – NH4OH. Нестойкое основание, которое легко распадается на воду и аммиак.NH4Cl + KOH → KCl + NH3 + H2O

  • Реакции с солями
  • (NH4)2SO4 + BaCl2 = BaSO4↓ + NH4Cl

  • Реакция гидролиза
  • В воде ион аммония подвергается гидролизу с образованием нестойкого гидроксида аммония.NH4+ + H2O ⇄ NH4OH + H+NH4OH ⇄ NH3 + H2O

  • Реакции разложения
  • NH4Cl → (t) NH3↑ + HCl↑(NH4)2CO3 → (t) NH3↑ + H2O + CO2↑NH4NO2 → (t) N2↑ + H2ONH4NO3 → (t) N2O↑ + H2O(NH4)3PO4 → (t) NH3↑ + H3PO4

Оксид азота I – N2O

Закись азота, веселящий газ – N2O – обладает опьяняющим эффектом. Несолеобразующий оксид. При н.у. является бесцветным газом с приятным сладковатым запахом и привкусом. В медицине применяется в больших концентрациях для ингаляционного наркоза.

Получают N2O разложением нитрата аммония при нагревании:

NH4NO3 → N2O + H2O

Оксид азота I разлагается на азот и кислород:

N2O → (t) N2 + O2

Оксид азота II – NO

Окись азота – NO. Несолеобразующий оксид. При н.у. бесцветный газ, на воздухе быстро окисляется до оксида азота IV.

Получение

В промышленных масштабах оксид азота II получают при каталитическом окислении аммиака.

NH3 + O2 → (t, кат) NO + H2O

В лабораторных условиях – в ходе реакции малоактивных металлов с разбавленной азотной кислотой.

Cu + HNO3(разб.) → Cu(NO3)2 + NO + H2O

Химические свойства

На воздухе быстро окисляется с образованием бурого газа – оксида азота IV – NO2.

NO + O2 → NO2

Оксид азота III – N2O3

При н.у. жидкость синего цвета, в газообразной форме бесцветен. Высокотоксичный, приводит к тяжелым ожогам кожи.

Получение

Получают N2O3 в две стадии: сначала реакцией оксида мышьяка III с азотной кислотой, затем охлаждением полученной смеси газов до температуры – 36 °C.

As2O3 + HNO3 → H3AsO 3 + NO↑ + NO2↑

При охлаждении газов образуется оксид азота III.

NO + NO2 → N2O3

Химические свойства

Является кислотным оксидом. соответствует азотистой кислота – HNO2, соли которой называются нитриты (NO2-). Реагирует с водой, основаниями.

H2O + N2O3 → HNO2

NaOH + N2O3 → NaNO2 + H2O

Оксид азота IV – NO2

Бурый газ, имеет острый запах. Ядовит.

Получение

В лабораторных условиях данный оксид получают в ходе реакции меди с концентрированной азотной кислотой. Также NO2 выделяется при разложении нитратов.

Cu + HNO3(конц) → Cu(NO3)2 + NO2 + H2O

Cu(NO3)2 → (t) CuO + NO2 + O2

Pb(NO3)2 → (t) PbO + NO2 + O2

Химические свойства

Проявляет высокую химическую активность, кислотный оксид.

  • Окислительные свойства
  • Как окислитель NO2 ведет себя в реакциях с фосфором, углеродом и серой, которые сгорают в нем.NO2 + C → CO2 + N2NO2 + P → P2O5 + N2Окисляет SO2 в SO3 – на этой реакции основана одна из стадий получения серной кислоты.SO2 + NO2 → SO3 + NO

  • Реакции с водой и щелочами
  • Оксид азота IV соответствует сразу двум кислотам – азотистой HNO2 и азотной HNO3. Реакции с водой и щелочами протекают по одной схеме.NO2 + H2O → HNO3 + HNO2NO2 + LiOH → LiNO3 + LiNO2 + H2OЕсли растворение в воде оксида проводить в избытке кислорода, образуется азотная кислота.NO2 + H2O + O2 → HNO3

Источник: https://studarium.ru/article/168

АЗОТ

Азот
статьи

АЗОТ, N (nitrogenium), химический элемент (ат. номер 7) VA подгруппы периодической системы элементов. Атмосфера Земли содержит 78% (об.) азота.

Чтобы показать, как велики эти запасы азота, отметим, что в атмосфере над каждым квадратным километром земной поверхности находится столько азота, что из него можно получить до 50 млн. т нитрата натрия или 10 млн. т аммиака (соединение азота с водородом), и все же это составляет малую долю азота, содержащегося в земной коре.

Существование свободного азота свидетельствует о его инертности и трудности взаимодействия с другими элементами при обычной температуре. Связанный азот входит в состав как органической, так и неорганической материи. Растительный и животный мир содержит азот, связанный с углеродом и кислородом в белках.

Помимо этого, известны и могут быть получены в больших количествах азотсодержащие неорганические соединения, такие, как нитраты (NO3–), нитриты (NO2–), цианиды (CN–), нитриды (N3–) и азиды (N3–).

Историческая справка

Опыты А.Лавуазье, посвященные исследованию роли атмосферы в поддержании жизни и процессов горения, подтвердили существование относительно инертного вещества в атмосфере.

Не установив элементную природу остающегося после сгорания газа, Лавуазье назвал его azote, что на древнегреческом означает «безжизненный». В 1772 Д.Резерфорд из Эдинбурга установил, что этот газ является элементом, и назвал его «вредный воздух».

Латинское название азота происходит от греческих слов nitron иgen, что означает «образующий селитру».

Фиксация азота и азотный цикл

Термин «фиксация азота» означает процесс связывания атмосферного азота N2.

В природе это может происходить двумя путями: либо бобовые растения, например горох, клевер и соя, накапливают на своих корнях клубеньки, в которых бактерии, фиксирующие азот, превращают его в нитраты, либо происходит окисление атмосферного азота кислородом в условиях разряда молнии. С.

Аррениус установил, что таким способом фиксируется до 400 млн. т азота ежегодно. В атмосфере оксиды азота соединяются с дождевой водой, образуя азотную и азотистую кислоты. Кроме того, установлено, что с дождем и снегом на каждый гектар земли попадает ок.

6700 г азота; достигая почвы, они превращаются в нитриты и нитраты. Растения используют нитраты для образования растительных белковых веществ. Животные, питаясь этими растениями, усваивают белковые вещества растений и превращают их в животные белки.

После смерти животных и растений происходит их разложение, азотные соединения превращаются в аммиак. Аммиак используется двумя путями: бактерии, не образующие нитратов, разрушают его до элементов, выделяя азот и водород, а другие бактерии образуют из него нитриты, которые другими бактериями окисляются до нитратов. Таким образом происходит круговорот азота в природе, или азотный цикл.

Строение ядра и электронных оболочек

В природе существуют два стабильных изотопа азота: с массовым числом 14 ( содержит 7 протонов и 7 нейтронов) и с массовым числом 15 ( содержит 7 протонов и 8 нейтронов). Их соотношение составляет 99,635:0,365, поэтому атомная масса азота равна 14,008. Нестабильные изотопы азота 12N, 13N, 16N, 17N получены искусственно.

Схематически электронное строение атома азота таково: 1s22s22px12py12pz1. Следовательно, на внешней (второй) электронной оболочке находится 5 электронов, которые могут участвовать в образовании химических связей; орбитали азота могут также принимать электроны, т.е.

возможно образование соединений со степенью окисления от (–III) до (V), и они известны. См. также АТОМА СТРОЕНИЕ.

Молекулярный азот

Из определений плотности газа установлено, что молекула азота двухатомна, т.е. молекулярная формула азота имеет вид NєN (или N2). У двух атомов азота три внешних 2p-электрона каждого атома образуют тройную связь:N:::N:, формируя электронные пары. Измеренное межатомное расстояние N–N равно 1,095 Å. Как и в случае с водородом (см.

ВОДОРОД), существуют молекулы азота с различным спином ядра – симметричные и антисимметричные. При обычной температуре соотношение симметричной и антисимметричной форм равно 2:1. В твердом состоянии известны две модификации азота: a – кубическая и b – гексагональная с температурой перехода a ® b –237,39° С.

Модификация b плавится при –209,96° С и кипит при –195,78° C при 1 атм (см. табл. 1).

Энергия диссоциации моля (28,016 г или 6,023Ч1023 молекул) молекулярного азота на атомы (N2 2N) равна примерно –225 ккал. Поэтому атомарный азот может образовываться при тихом электрическом разряде и химически более активен, чем молекулярный азот.

Получение и применение

Способ получения элементного азота зависит от требуемой его чистоты. В огромных количествах азот получают для синтеза аммиака, при этом допустимы небольшие примеси благородных газов.

Азот из атмосферы

Экономически выделение азота из атмосферы обусловлено дешевизной метода сжижения очищенного воздуха (пары воды, CO2, пыль, другие примеси удалены). Последовательные циклы сжатия, охлаждения и расширения такого воздуха приводят к его сжижению.

Жидкий воздух подвергают фракционной перегонке при медленном подъеме температуры. Первыми выделяются благородные газы, затем азот, и остается жидкий кислород. Очистка достигается многократностью процессов фракционирования.

Таким методом производят многие миллионы тонн азота ежегодно, преимущественно для синтеза аммиака, который является исходным сырьем в технологии производства различных азотсодержащих соединений для промышленности и сельского хозяйства.

Кроме того, очищенную азотную атмосферу часто используют, когда недопустимо присутствие кислорода.

Лабораторные способы

Азот в небольших количествах можно получать в лаборатории разными способами, окисляя аммиак или ион аммония, например:

Очень удобен процесс окисления иона аммония нитрит-ионом:

Известны и другие способы – разложение азидов при нагревании, разложение аммиака оксидом меди(II), взаимодействие нитритов с сульфаминовой кислотой или мочевиной:

При каталитическом разложении аммиака при высокой температуре тоже можно получить азот:

Химические свойства

Как уже было отмечено, преобладающим свойством азота при обычных условиях температуры и давления является его инертность, или малая химическая активность.

Электронная структура азота содержит электронную пару на 2s-уровне и три наполовину заполненные 2р-орбитали, поэтому один атом азота может связывать не более четырех других атомов, т.е. его координационное число равно четырем.

Небольшой размер атома также ограничивает количество атомов или групп атомов, которые могут быть связаны с ним. Поэтому многие соединения других членов подгруппы VA либо вовсе не имеют аналогов среди соединений азота, либо аналогичные соединения азота оказываются нестабильными.

Так, PCl5 – стабильное соединение, а NCl5 не существует. Атом азота способен связываться с другим атомом азота, образуя несколько достаточно стабильных соединений, такие, как гидразин N2H4 и азиды металлов MN3. Такой тип связи необычен для химических элементов (за исключением углерода и кремния).

При повышенных температурах азот реагирует со многими металлами, образуя частично ионные нитриды MxNy. В этих соединениях азот заряжен отрицательно. В табл. 2 приведены степени окисления и примеры соответствующих соединений.

Таблица 2. СТЕПЕНИ ОКИСЛЕНИЯ АЗОТА И СООТВЕТСТВУЮЩИЕ СОЕДИНЕНИЯ
Степень окисленияПримеры соединений
–III Аммиак NH3, ион аммония NH4+, нитриды M3N2
–II Гидразин N2H4
–I Гидроксиламин NH2OH
I Гипонитрит натрия Na2N2O2, оксид азота(I) N2O
II Оксид азота(II) NO
III Оксид азота(III) N2O3, нитрит натрия NaNO2
IV Оксид азота(IV) NO2, димер N2O4
V Оксид азота(V) N2O5, азотная кислота HNO3 и ее соли (нитраты)

Нитриды

Соединения азота с более электроположительными элементами, металлами и неметаллами – нитриды – похожи на карбиды и гидриды. Их можно разделить в зависимости от характера связи M–N на ионные, ковалентные и с промежуточным типом связи. Как правило, это кристаллические вещества.

Ионные нитриды

Связь в этих соединениях предполагает переход электронов от металла к азоту с образованием иона N3–. К таким нитридам относятся Li3N, Mg3N2, Zn3N2 и Cu3N2. Кроме лития, другие щелочные металлы IA подгруппы нитридов не образуют. Ионные нитриды имеют высокие температуры плавления, реагируют с водой, образуя NH3 и гидроксиды металлов.

Ковалентные нитриды

Когда электроны азота участвуют в образовании связи совместно с электронами другого элемента без перехода их от азота к другому атому, образуются нитриды с ковалентной связью.

Нитриды водорода (например, аммиак и гидразин) полностью ковалентны, как и галогениды азота (NF3 и NCl3). К ковалентным нитридам относятся, например, Si3N4, P3N5 и BN – высокостабильные белые вещества, причем BN имеет две аллотропные модификации: гексагональную и алмазоподобную.

Последняя образуется при высоких давлениях и температурах и имеет твердость, близкую к твердости алмаза.

Нитриды с промежуточным типом связи

Переходные элементы в реакции с NH3 при высокой температуре образуют необычный класс соединений, в которых атомы азота распределены между регулярно расположенными атомами металла. В этих соединениях нет четкого смещения электронов. Примеры таких нитридов – Fe4N, W2N, Mo2N, Mn3N2. Эти соединения, как правило, совершенно инертны и обладают хорошей электрической проводимостью.

Водородные соединения азота

Азот и водород взаимодействуют, образуя соединения, отдаленно напоминающие углеводороды (см. также ОРГАНИЧЕСКАЯ ХИМИЯ).

Стабильность азотоводородов уменьшается с увеличением числа атомов азота в цепи в отличие от углеводородов, которые устойчивы и в длинных цепях.

Наиболее важные нитриды водорода – аммиак NH3 и гидразин N2H4. К ним относится также азотистоводородная кислота HNNN (HN3).

Аммиак NH3

Аммиак – один из наиболее важных промышленных продуктов современной экономики. В конце 20 в. США производили ок. 13 млн. т аммиака ежегодно (в пересчете на безводный аммиак).

Строение молекулы

Молекула NH3 имеет почти пирамидальное строение. Угол связи H–N–H составляет 107°, что близко к величине тетраэдрического угла 109°. Неподеленная электронная пара эквивалентна присоединенной группе, в результате координационное число азота равно 4 и азот располагается в центре тетраэдра.

Cвойства аммиака

Некоторые физические свойств аммиака в сравнении с водой приведены в табл. 3.

Таблица 3. НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА АММИАКА И ВОДЫ
Свойство Аммиак Вода
Плотность, г/см3 0,65 (–10° С) 1,00 (4,0° С)
Температура плавления, °С –77,7 0
Температура кипения, °С –33,35 100
Критическая температура, °С 132 374
Критическое давление, атм 112 218
Энтальпия испарения, Дж/г 1368 (–33° С) 2264 (100° С)
Энтальпия плавления, Дж/г 351 (–77° С) 334 (0° С)
Удельная электропроводность 5Ч10–11 (–33° С) 4Ч10–8 (18° С)

Температуры кипения и плавления у аммиака намного ниже, чем у воды, несмотря на близость молекулярных масс и сходство строения молекул. Это объясняется относительно большей прочностью межмолекулярных связей у воды, чем у аммиака (такая межмолекулярная связь называется водородной).

Аммиак как растворитель

Высокая диэлектрическая проницаемость и дипольный момент жидкого аммиака позволяют использовать его как растворитель для полярных или ионных неорганических веществ.

Аммиак-растворитель занимает промежуточное положение между водой и органическими растворителями типа этилового спирта. Щелочные и щелочноземельные металлы растворяются в аммиаке, образуя темносиние растворы.

Можно полагать, что в растворе происходит сольватация и ионизация валентных электронов по схеме

Синий цвет связывают с сольватацией и движением электронов или с подвижностью «дырок» в жидкости.

При высокой концентрации натрия в жидком аммиаке раствор принимает бронзовую окраску и отличается высокой электропроводностью.

Несвязанный щелочной металл можно выделить из такого раствора испарением аммиака или добавлением хлорида натрия. Растворы металлов в аммиаке являются хорошими восстановителями. В жидком аммиаке происходит автоионизация

аналогично процессу, протекающему в воде:

Некоторые химические свойства обеих систем сопоставлены в табл. 4.

Жидкий аммиак как растворитель имеет преимущество в некоторых случаях, когда невозможно проводить реакции в воде из-за быстрого взаимодействия компонентов с водой (например, окисление и восстановление).

Например, в жидком аммиаке кальций реагирует с KCl с образованием CaCl2 и K, поскольку CaCl2 нерастворим в жидком аммиаке, а К растворим, и реакция протекает полностью.

В воде такая реакция невозможна из-за быстрого взаимодействия Ca с водой.

Получение аммиака

Газообразный NH3 выделяется из солей аммония при действии сильного основания, например, NaOH:

Метод применим в лабораторных условиях. Небольшие производства аммиака основаны также на гидролизе нитридов, например Mg3N2, водой. Цианамид кальция CaCN2 при взаимодействии с водой также образует аммиак. Основным промышленным методом получения аммиака является каталитический синтез его из атмосферного азота и водорода при высоких температуре и давлении:

Водород для этого синтеза получают термическим крекингом углеводородов, действием паров воды на уголь или железо, разложением спиртов парами воды или электролизом воды.

На синтез аммиака получено множество патентов, отличающихся условиями проведения процесса (температура, давление, катализатор). Существует способ промышленного получения при термической перегонке угля.

С технологической разработкой синтеза аммиака связаны имена Ф.Габера и К.Боша.

Таблица 4. СРАВНЕНИЕ РЕАКЦИЙ В ВОДНОЙ И АММИАЧНОЙ СРЕДЕ
Водная среда Аммиачная среда
Нейтрализация
OH– + H3O+ ® 2H2O NH2– + NH4+ ® 2NH3
Гидролиз (протолиз)
PCl5 + 3H2O POCl3 + 2H3O+ + 2Cl– PCl5 + 4NH3 PNCl2 + 3NH4+ + 3Cl–
Замещение
Zn + 2H3O+ ® Zn2+ + 2H2O + H2 Zn + 2NH4+® Zn2+ + 2NH3 + H2
Сольватация (комплексообразование)
Al2Cl6 + 12H2O 2[Al(H2O)6]3+ + 6Cl– Al2Cl6 + 12NH3 2[Al(NH3)6]3+ + 6Cl–
Амфотерность
Zn2+ + 2OH– Zn(OH)2 Zn2+ + 2NH2– Zn(NH2)2
Zn(OH)2 + 2H3O+ Zn2+ + 4H2O Zn(NH2)2 + 2NH4+ Zn2+ + 4NH3
Zn(OH)2 + 2OH– Zn(OH)42– Zn(NH2)2 + 2NH2– Zn(NH2)42–

Химические свойства аммиака

Кроме реакций, упомянутых в табл. 4, аммиак реагирует с водой, образуя соединение NH3ЧH2O, которое часто ошибочно считают гидроксидом аммония NH4OH; в действительности существование NH4OH в растворе не доказано. Водный раствор аммиака («нашатырный спирт») состоит преимущественно из NH3, H2O и и малых концентраций ионов NH4+ и OH–, образующихся при диссоциации

Основной характер аммиака объясняется наличием неподеленной электронной пары азота:NH3. Поэтому NH3 – это основание Льюиса, которое имеет высшую нуклеофильную активность, проявляемую в форме ассоциации с протоном, или ядром атома водорода:

Любые ион или молекула, способные принимать электронную пару (электрофильное соединение), будут взаимодействовать с NH3 с образованием координационного соединения. Например:

Символ Mn+ представляет ион переходного металла (B-подгруппы периодической таблицы, например, Cu2+, Mn2+ и др.). Любая протонная (т.е.

Н-содержащая) кислота реагирует с аммиаком в водном растворе с образованием солей аммония, таких, как нитрат аммония NH4NO3, хлорид аммония NH4Cl, сульфат аммония (NH4)2SO4, фосфат аммония (NH4)3PO4.

Эти соли широко применяются в сельском хозяйстве как удобрения для введения азота в почву. Нитрат аммония кроме того применяют как недорогое взрывчатое вещество; впервые оно было применено с нефтяным топливом (дизельным маслом).

Водный раствор аммиака применяют непосредственно для введения в почву или с орошающей водой. Мочевина NH2CONH2, получаемая синтезом из аммиака и углекислого газа, также является удобрением. Газообразный аммиак реагирует с металлами типа Na и K с образованием амидов:

Аммиак реагирует с гидридами и нитридами также с образованием амидов:

Амиды щелочных металлов (например, NaNH2) реагируют с N2O при нагревании, образуя азиды:

Газообразный NH3 восстанавливает оксиды тяжелых металлов до металлов при высокой температуре, по-видимому, благодаря водороду, образующемуся в результате разложения аммиака на N2 и H2:

Атомы водорода в молекуле NH3 могут замещаться на галоген. Иод реагирует с концентрированным раствором NH3, образуя смесь веществ, содержащую NI3.

Это вещество очень неустойчиво и взрывается при малейшем механическом воздействии. При реакции NH3 c Cl2 образуются хлорамины NCl3, NHCl2 и NH2Cl.

При воздействии на аммиак гипохлорита натрия NaOCl (образуется из NaOH и Cl2) конечным продуктом является гидразин:

Гидразин

Приведенные выше реакции представляют собой способ получения моногидрата гидразина состава N2H4ЧH2O.

Безводный гидразин образуется при специальной перегонке моногидрата с BaO или другими водоотнимающими веществами. По свойствам гидразин слегка напоминает пероксид водорода H2O2.

Чистый безводный гидразин – бесцветная гигроскопичная жидкость, кипящая при 113,5° C; хорошо растворяется в воде, образуя слабое основание

В кислой среде (H+) гидразин образует растворимые соли гидразония типа [NH2NH2H]+X–. Легкость, с которой гидразин и некоторые его производные (например, метилгидразин) реагируют с кислородом, позволяет использовать его в качестве компонента жидкого ракетного топлива. Гидразин и все его производные сильно ядовиты.

Оксид азота(I)

N2O (монооксид диазота) получается при термической диссоциации нитрата аммония:

Молекула имеет линейное строение

N2O довольно инертен при комнатной температуре, но при высоких температурах может поддерживать горение легко окисляющихся материалов. N2O, известный как «веселящий газ», используют для умеренной анестезии в медицине.

Оксид азота(II)

NO – бесцветный газ, является одним из продуктов каталитической термической диссоциации аммиака в присутствии кислорода:

NO образуется также при термическом разложении азотной кислоты или при реакции меди с разбавленной азотной кислотой:

NO можно получать синтезом из простых веществ (N2 и O2) при очень высоких температурах, например в электрическом разряде. В структуре молекулы NO имеется один неспаренный электрон.

Соединения с такой структурой взаимодействуют с электрическим и магнитным полями.

В жидком или твердом состоянии оксид имеет голубую окраску, поскольку неспаренный электрон вызывает частичную ассоциацию в жидком состоянии и слабую димеризацию в твердом состоянии: 2NO N2O2.

Оксид азота(III)

N2O3 (триоксид азота) – ангидрид азотистой кислоты: N2O3 + H2O 2HNO2. Чистый N2O3 может быть получен в виде голубой жидкости при низких температурах (–20° С) из эквимолекулярной смеси NO и NO2. N2O3 устойчив только в твердом состоянии при низких температурах (т.пл. –102,3° С), в жидком и газообразном состояния он снова разлагается на NO и NO2.

Оксид азота(IV)

NO2 (диоксид азота) также имеет в молекуле неспаренный электрон (см. выше оксид азота(II)). В строении молекулы предполагается трехэлектронная связь, и молекула проявляет свойства свободного радикала (одна линия соответствует двум спаренным электронам):

NO2 получается каталитическим окислением аммиака в избытке кислорода или окислением NO на воздухе:

а также по реакциям:

При комнатной температуре NO2 – газ темнокоричневого цвета, обладает магнитными свойствами благодаря наличию неспаренного электрона. При температурах ниже 0° C молекула NO2 димеризуется в тетраоксид диазота, причем при –9,3° C димеризация протекает полностью: 2NO2 N2O4. В жидком состоянии недимеризовано только 1% NO2, а при 100° C остается в виде димера 10% N2O4.

NO2 (или N2O4) реагирует в теплой воде с образованием азотной кислоты: 3NO2 + H2O = 2HNO3 + NO. Технология NO2 поэтому очень существенна как промежуточная стадия получения промышленно важного продукта – азотной кислоты.

Оксид азота(V)

N2O5 (устар. ангидрид азотной кислоты) – белое кристаллическое вещество, получается обезвоживанием азотной кислоты в присутствии оксида фосфора P4O10:

N2O5 легко растворяется во влаге воздуха, вновь образуя HNO3. Свойства N2O5 определяются равновесием

N2O5 – хороший окислитель, легко реагирует, иногда бурно, с металлами и органическими соединениями и в чистом состоянии при нагреве взрывается. Вероятную структуру N2O5 можно представить как

Оксокислоты азота

Для азота известны три оксокислоты: гипоазотистая H2N2O2, азотистая HNO2 и азотная HNO3.

Гипоазотистая кислота

H2N2O2 – очень нестабильное соединение, образуется в неводной среде из соли тяжелого металла – гипонитрита при действии другой кислоты: M2N2O2 + 2HX 2MX + H2N2O2. При выпаривании раствора образуется белое взрывчатое вещество с предполагаемой структурой H–O–N=N–O–H.

Азотистая кислота

HNO2 не существует в чистом виде, однако водные растворы ее невысокой концентрации образуются при добавлении серной кислоты к нитриту бария:

Азотистая кислота образуется также при растворении эквимолярной смеси NO и NO2 (или N2O3) в воде. Азотистая кислота немного сильнее уксусной кислоты.

Степень окисления азота в ней +3 (ее структура H–O–N=O), т.е. она может являться и окислителем, и восстановителем.

Под действием восстановителей она восстанавливается обычно до NO, а при взаимодействии с окислителями окисляется до азотной кислоты.

Скорость растворения некоторых веществ, например металлов или иодид-иона, в азотной кислоте зависит от концентрации азотистой кислоты, присутствующей в виде примеси. Соли азотистой кислоты – нитриты – хорошо растворяются в воде, кроме нитрита серебра. NaNO2 применяется в производстве красителей.

Vse-referaty
Добавить комментарий