Интерференция света

Интерференция световых волн

Интерференция света
Определение 1

Интерференция – это одно из наиболее ярких проявлений волновой природы света. Мы можем наблюдать такое интересное и красивое явление, если наложить друг на друга 2 или более световых пучков.

В месте перекрывания пучков интенсивность волны света обладает характером чередующихся светлых и темных полос, при этом в точках максимумов интенсивность больше, а в точках минимумов меньше суммы интенсивностей пучков.

Определение 2

При белом свете интерференционные полосы окрашиваются в разные цвета светового спектра. На практике интерференционные явления окружают нас повсюду. Это и цвета масляных пятен на асфальте, и окрашивание замерзающих оконных стекол, и чудесные цветные рисунки на крыльях отдельных бабочек и жуков.

Первый научный эксперимент по наблюдению интерференции света провел в лабораторных условиях И. Ньютон. Ученый рассматривал интерференционную картину, которая возникала при отражении света в тонкой воздушной прослойке между плоской стеклянной пластиной и плосковыпуклой линзой большого радиуса кривизны. Наблюдение Ньютона графически изображено на рис. 3.7.1.

Определение 3

Интерференционная картина выглядела в виде концентрических колец, которые впоследствие получили название колец Ньютона (рис. 3.7.2).

Рисунок 3.7.1. Наблюдение колец Ньютона. Интерференционная картина возникает при сложении волн, отразившихся от 2-х сторон воздушной прослойки. «Лучи» 1 и 2 – направления распространения волн;
h – толщина воздушного зазора.

Рисунок 3.7.2. Кольца Ньютона в зеленом и красном свете.

У И. Ньютона не получилось с позиции корпускулярной теории дать объяснение тому, почему возникают кольца. Но ученый понимал, что это имеет отношение к какой-то периодичности световых процессов.

Интерференционный опыт Юнга

В 1802 году ученый Юнга провел первый интерференционный опыт, которому есть подтверждение в волновой теории света. В данном эксперименте свет от источника – узкой щели S попадал на экран с
2-мя близко расположенными друг к другу щелями S1 и S2, как показано на рис. 3.7.3.

Минуя каждую из щелей, световой пучок уширялся из-за дифракции, а потому на белом экране Э световые пучки, которые прошли через щели S1 и S2, перекрывались. В месте перекрытия световых пучков находится интерференционная картина, выступающая в виде чередующихся светлых и темных полос.

Рисунок 3.7.3. Схема интерференционного опыта Юнга.

Ученый Юнг – первый, кто догадался, что невозможно увидеть интерференцию, если сложить волны от 2-х независимых источников. Потому в его эксперименте щели S1 и S2, которые по принципу Гюйгенса можно рассматривать в качестве источников вторичных волн, освещались светом одного источника S.

Если симметрично расположить щели, то вторичные волны от источников S1 и S2 находятся в фазе, однако волны проходят до точки наблюдения P различные расстояния r1 и r2. Можно сделать вывод, что фазы колебаний, которые создаются волнами от источников S1 и S2 в точке P, различные.

Следует, что задача об интерференции волн – это задача о сложении колебаний одинаковой частоты, но с различными фазами.

Определение 4

Высказывание о том, что волны от источников S1 и S2 распространяются независимым образом, а в точке наблюдения они складываются друг с другом, – это опытный факт, который называется принципом суперпозиции.

Определение 5

Монохроматическую (или синусоидальную) волну, распространяющуюся в направлении радиус-вектора r→, записывают в виде

E=a cos (ωt – kr),

где a – это амплитуда волны, k=2πλ – это волновое число, λ – это длина волны, ω=2πν – это круговая частота. При решении оптических задач под E предполагают модуль вектора напряженности электрического поля волны. При вкладывании 2-х волн в точке P итоговое колебание также случается на частоте ω и обладает некоторой амплитудой A и фазой φ:

E=a1·cos (ωt–kr1)+a2·cos (ωt – kr2)=A·cos (ωt-φ).

Приборы, которые могли бы следить за быстрыми изменениями поля световой волны в оптическом диапазоне, не существуют. Наблюдаемая величина – это поток энергии, прямо пропорциональный квадрату амплитуды электрического поля волны.

Определение 6

Физическая величина, равная квадрату амплитуды электрического поля волны, называется интенсивностью: I=A2.

Путем простых тригонометрических вычислений можно прийти к следующему выражению для интенсивности результирующего колебания в точке P:

I=A2=a12+a22+2a1a2 cosk∆=I1+I2+2I1I2 cos k∆ (*),

где Δ=r2–r1 – это разность хода.

Из данного выражения можно сделать вывод, что интерференционный максимум (то есть светлая полоса) достигается в таких точках пространства, в которых Δ=mλ (m=0, ±1, ±2, …). Причем Imax=(a1+a2)2=I1+I2. Интерференционный минимум (то есть темная полоса) достигается при Δ=mλ+λ2. Минимальное значение интенсивности Imin=(a1–a2)2

Источник: https://Zaochnik.com/spravochnik/fizika/volnovaja-optika/interferentsija-svetovyh-voln/

Интерференция света. Волновой цуг – материалы для подготовки к ЕГЭ по Физике

Интерференция света

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ:  интерференция света.

В предыдущей теме Интерференция волн мы разобрались с интерференцией волн, излучённых двумя одинаковыми когерентными точечными источниками. Теперь давайте включим электрическую лампочку, а затем – такую же вторую рядом с ней. Как вы хорошо знаете по опыту, освещённость окружающего пространства равномерно возрастёт, и никакой интерференционной картины вокруг лампочек не возникнет. Почему же?

Оказывается, что две лампочки, пусть и совершенно одинаковые, всегда будут некогерентными источниками света. А вот чтобы понять, почему лампочки некогерентны, надо немного поговорить об излучении света атомами.

Волновой цуг

Откуда вообще берётся свет? Видимый свет излучается атомами различных тел. Механизм излучения света относится квантовой физике, но для понимания оптических интерференционных явлений знать хотя бы в общих чертах, как атомы излучают свет, надо обязательно. Поэтому обсудим вкратце этот вопрос.

Обычным состоянием атома, в котором он может пребывать неограниченно долго, является основное, или невозбуждённое состояние.

Когда атом находится в основном состоянии, электроны, окружающие ядро атома, максимально заполняют ближайшие к ядру орбиты.

Потенциальная энергия взаимодействия электронов с ядром принимает своё минимальное значение, и говорят, соответственно, что
в основном состоянии атом обладает наименьшей энергией.

Но атом обладает способностью поглощать энергию. Под действием внешних факторов – например, в результате соударений с другими атомами или поглощения света – атом может перейти в возбуждённое состояние.

Это значит, что какой-либо электрон покидает “насиженное место” на своей основной орбите и переходит на орбиту, расположенную дальше от ядра. Потенциальная энергия взаимодействия электрона с ядром при этом возрастает; соответственно, в возбуждённом состоянии энергия атома больше, чем в основном.

Величина , на которую энергия возбуждённого состояния превышает энергию основного состояния, в точности равна энергии, поглощённой атомом.

Опыт показывает, однако, что в возбуждённом состоянии атом долго не пробудет и в итоге вернётся в основное состояние. В процессе этого перехода энергия атома уменьшится и снова примет своё минимально возможное значение. Куда же при этом денется энергия – ?

Атом вернёт поглощённую энергию в виде излучения. В результате перехода из возбуждённого состояния в основное атом излучает электромагнитный импульс – так называемый волновой цуг (рис. 1).

Рис. 1. Излучение атомом волнового цуга

Длительность цуга порядка ; соответственно, длина цуга м. Частота цуга может находиться в видимом диапазоне, и тогда цуг будет регистрироваться человеческим глазом.

Итак, свет – это поток цугов, излучённых атомами. Так, атомы спирали лампочки при прохождения электрического тока совершают интенсивное тепловое движение и сталкиваются друг с другом, переходя в возбуждённое состояние; затем, возвращаясь в основное состояние,они испускают цуги видимого света. Вот почему лампочка горит!

Ну а теперь самое главное. Из возбуждённого состояния в основное атом переходит в случайный, непредсказуемый момент времени. Это означает, что моменты испускания цугов различными атомами никак не согласованы между собой!

Цуги, образующие свет, даже если и обладают одной частотой, имеют совершенно произвольные начальные фазы и потому являются некогерентными. Вот почему от двух одинаковых лампочек не получается устойчивой интерференционной картины: излучаемые ими пучки света состоят из некогерентных цугов и не могут интерферировать друг с другом.

Как же тогда быть? Можно ли вообще наблюдать интерференцию света? Оказывается, можно! Замечательная идея, позволяющая “обхитрить” некогерентные цуги и добиться необходимой когерентности, состоит в том, чтобы использовать изображения одного и того же источника. Они-то будут когерентными! Давайте посмотрим, как работает эта идея, на примере одного из первых классических интерференционных опытов – зеркал Френеля.

Зеркала Френеля

На рис. 2 изображена схема этого эксперимента. Два плоских зеркала и образуют почти развёрнутый угол и создают два близко расположенных изображения и точечного источника света . Вдали расположен экран; ширма закрывает экран от прямых лучей источника. На экран, таким образом, попадают лишь лучи, отражённые от зеркал.

Рис. 2. Интерференционный опыт с зеркалами Френеля

Световые лучи, как всегда, изображены зелёным цветом. Направления лучей мы уже не указываем, чтобы не загромождать рисунок. К тому же, у вас позади геометрическая оптика, так что вы легко поймёте ход лучей и без указания их направления 🙂

Лучи, отражённые зеркалом , образуют пучок , который как бы исходит из мнимого изображения источника . Аналогично, лучи, отражённые зеркалом , образуют пучок , как бы исходящий из мнимого изображения .

Эти пучки оказываются когерентными, поскольку когерентны мнимые источники и . Действительно, эти источники суть изображения одного и того же источника , поэтому их частоты совпадают и сдвиг фаз между ними равен нулю.

Следовательно, в области , где перекрываются пучки, можно наблюдать устойчивую интерференционную картину! Фактически, в каждой точке данной области в каждый момент времени накладывается сам на себя один и тот же цуг – с одним и тем же, фиксированным для данной точки сдвигом фаз, определяемым разностью хода от источников и .

Теперь мы видим, что данная ситуация совершенно аналогична задаче об интерференции волн двух когерентных точечных источников, разобранной в конце предыдущего листка. В частности, ширина интерференционных полос, наблюдаемых в опыте с зеркалами Френеля, равна , где и – расстояние от прямой до экрана. Величины и несложно найти геометрически.

Интерференция в тонких плёнках

Глядя на переливающийся различными цветами мыльный пузырь, на радужные отблески масляных или бензиновых пятен на поверхности воды, вы, оказывается, наблюдаете не что иное, как интерференцию света!

Давайте посмотрим на рис. 3. На поверхность тонкой прозрачной плёнки падает световой луч .

Рис. 3. Интерференция в тонкой плёнке

Падающий луч расщепляется на два луча: отражённый луч и преломлённый луч . После вторичного отражения и преломления из плёнки выходит второй луч , параллельный отражённому лучу.

Оба луча фокусируются собирающей линзой в точке . Это может быть самая обычная линза (при наблюдении интерференционной картины на экране) или оптическая система нормального глаза (при непосредственном разглядывании).

Обе волны и , будучи частями одной и той же волны , являются когерентными. Действительно, в точке сходятся две копии одного цуга с некоторым фиксированным сдвигом фаз между собой; этот сдвиг фаз обеспечивается разностью хода между волнами и . Поэтому волны и интерферируют друг с другом, давая картину чередующихся максимумов и минимумов в окружающем пространстве.

Предположим, что плёнка освещается белым светом. Как вы знаете, белый свет является смесью волн с различными частотами; эти частоты отвечают цветам от красного до фиолетового. Пусть, например, разность хода между волнами и равна целому числу длин волн красного света. Тогда красная составляющая белого света усилит сама себя, и отражённый плёнкой свет нам будет казаться красным.

При небольшом изменении угла падения (или толщины плёнки) изменится и разность хода. Поэтому, если поверхность плёнки является неровной (или если мы посмотрим чуть с другого направления), то новая разность хода может стать равна целому числу длин волн, например, зелёного света. Теперь произойдёт усиление зелёной составляющей белого света, и отражённый от плёнки свет мы увидим зелёным.

Всё это мы наблюдаем, рассматривая мыльный пузырь. Перемещение его поверхности приводит к постоянному изменению разности хода для данного ракурса. Происходит усиление то одного цвета, то другого, и в результате пузырь переливается цветами радуги.

Кольца Ньютона

Возьмём плоско-выпуклую линзу с достаточно большим радиусом сферической поверхности и положим её выпуклостью вниз на стеклянную пластину. Если глядеть сверху, то сквозь линзу можно увидеть интерференционную картину в виде концентрических колец (рис. 4)

Рис. 4. Кольца Ньютона в красном свете

Это кольца Ньютона; они изучались Ньютоном при освещении как белым, так и монохроматическим светом. Происхождение колец Ньютона вполне аналогично интерференции в тонких плёнках (рис. 5).

Рис. 5. Происхождение колец Ньютона

Падающий луч расщепляется на два луча 1 и 2, отражённых соответственно от сферической поверхности линзы и от пластины; между этими лучами возникает разность хода, и они интерферируют между собой. Все три луча, изображённые на рисунке, в реальности почти сливаются друг с другом из-за малой кривизны поверхности линзы.

Вычислим радиусы светлых колец Ньютона. Пусть точка падения луча на сферическую поверхность находится на расстоянии y от пластины (рис. 6).

Рис. 6. К расчёту радиусов колец

Пусть – радиус кривизны сферической поверхности линзы, – расстояние от точки
падения до оси симметрии линзы. Имеем:

.

Поскольку воздушная прослойка очень тонка (), величиной можно пренебречь по сравнению с :

.

Отсюда

.

Как видно из рис. 5, путь второго луча превышает путь первого луча примерно на 2y. Однако разность хода будет больше, чем 2y, поскольку вмешивается один важный эффект.

На рис. 7 слева показано отражение на границе воздух-стекло. Обратите внимание: фаза отражённой волны отличается на от фазы падающей волны.

Оказывается, это общий факт:при отражении от оптически более плотной среды (то есть от среды с большим показателем преломления) происходит изменение фазы колебаний на , что равносильно сдвигу отражённой волны относительно падающей на половину длины волны.

Рис. 7. Отражение со сдвигом на полволны и без него

Справа на рис. 7 показано отражение на границе стекло-воздух. Изменения фазы нет! И это общий факт:при отражении от оптически менее плотной среды фазы отражённой и падающей волн совпадают.

Возвращаясь теперь к рис. 5 и 6, мы видим, что луч 2 не только проходит дополнительный путь 2y, но и сдвигается на полволны при отражении на границе воздух-пластина. Луч 1 не испытывает такого сдвига, поскольку отражается на границе линза-воздух. Поэтому разность хода d между лучами 1 и 2 оказывается больше, чем 2y, на половину длины волны:

.

Светлые кольца будут в местах интерференционных максимумов, когда разность хода равна целому числу длин волн. Имеем:

.

Отсюда получаем радиусы светлых колец:

.

Как видим, радиус растёт с увеличением номера кольца. Кроме того, радиус кольца с заданным порядковым номером возрастает при переходе от фиолетового цвета к красному (поскольку увеличивается длина волны).

Радиусы тёмных колец вычисляются аналогично – надо только разность хода d приравнять к нечётному числу длин полуволн. Проделайте это самостоятельно и получите выражение:

.

Радиусы тёмных колец увеличиваются пропорционально квадратному корню из номера кольца. Тёмное кольцо в центре картины – это интерференционный минимум, который возникает из-за полуволнового сдвига второго луча при отражении от стеклянной пластины. Здесь y= 0, и поэтому разность хода равна

Просветление оптики

Пожалуй, самым широким на сегодняшний день применением интерференции света служит просветление оптики. Расскажем вкратце, что это такое.

Свет, падающий на линзу, частично отражается назад; доля отражённого света обычно составляет несколько процентов. Объективы современной оптической техники представляют собой системы линз (числом до нескольких десятков).

В результате отражений на поверхности каждой линзы происходит значительное ослабление света: в сумме на отражениях может теряться до 90% световой энергии.

Освещённость изображений предметов, даваемых такой оптической системой, будет чрезвычайно низкой.

Как уменьшить потери на отражение? Для этого на поверхность линзы наносят интерференционное покрытие в виде тонкой плёнки (рис. 8).

Рис. 8. Просветление оптики

Толщина покрытия подбирается так, чтобы отражённые волны 1 и 2 были сдвинуты на полволны и, интерферируя, погасили друг друга. Тогда не будет потерь на отражение, и вся световая энергия пройдёт через линзу. Изображение получится более ярким – оптика “просветляется”.

Толщина интерференционного покрытия зависит, разумеется, от длины волны, и добиться полного гашения отражённых волн во всём видимом диапазоне не получается.

Покрытие обычно подбирается так, чтобы при отражении гасилась средняя, жёлто-зелёная часть видимого спектра (в которой лежит максимум интенсивности солнечного излучения).

Поэтому в отражённых лучах доминируют крайние части спектра – красная и фиолетовая; их смесью, например, является хорошо известный вам сиреневый отблеск объектива фотоаппарата.

Источник: https://ege-study.ru/ru/ege/materialy/fizika/interferenciya-sveta/

Интерференция света – Класс!ная физика

Интерференция света

«Физика – 11 класс»

Если свет представляет собой поток волн, то должно наблюдаться явление интерференции света.

Однако получить интерференционную картину (чередование максимумов и минимумов освещенности) с помощью двух независимых источников света, например двух электрических лампочек, невозможно.

Включение еще одной лампочки лишь увеличивает освещенность поверхности, но не создает чередования минимумов и максимумов освещенности.

Выясним, в чем причина этого и при каких условиях можно наблюдать интерференцию света.

Условие когерентности световых волн

Причина отсутствия интерференционной картины в опыте с двумя лампочками в том, что световые волны, излучаемые независимыми источниками, не согласованы друг с другом.

Для получения же устойчивой интерференционной картины нужны согласованные волны. Они должны иметь одинаковые длины волн и постоянную во времени разность фаз в любой точке пространства.

Напомним, что такие согласованные волны с одинаковыми длинами волн и постоянной разностью фаз называются когерентными.

Почти точного равенства длин волн от двух источников добиться нетрудно. Для этого достаточно использовать хорошие светофильтры, пропускающие свет в очень узком интервале длин волн. Но невозможно осуществить постоянство разности фаз от двух независимых источников.

Атомы источников излучают свет независимо друг от друга отдельными «обрывками» (цугами) синусоидальных волн, имеющими обычно длину около метра. И такие цуги волн от обоих источников налагаются друг на друга.

В результате амплитуда колебаний в любой точке пространства хаотично меняется со временем в зависимости от того, как в данный момент времени цуги волн от различных источников сдвинуты относительно друг друга по фазе.

Волны от различных источников света некогерентны из-за того, что разность фаз волн не остается постоянной (исключение составляют квантовые источники света — лазеры, созданные в 1960 г.). Никакой устойчивой картины с определенным распределением максимумов и минимумов освещенности в пространстве не наблюдается.

Интерференция в тонких пленках

Тем не менее интерференцию света удается наблюдать. Хотя ее и наблюдали очень давно, но только не придавали этому значения.

Вы тоже много раз видели интерференционную картину, когда в детстве развлекались пусканием мыльных пузырей или наблюдали за радужным переливом цветов тонкой пленки керосина либо нефти на поверхности воды.

«Мыльный пузырь, витая в воздухе… зажигается всеми оттенками цветов, присущими окружающим предметам. Мыльный пузырь, пожалуй, самое изысканное чудо природы» (Марк Твен).

Именно интерференция света делает мыльный пузырь столь достойным восхищения.

Английский ученый Томас Юнг первым пришел к гениальной мысли о возможности объяснения цветов тонких пленок сложением волн 1 и 2 (рис. 8.48), одна из которых (1) отражается от наружной поверхности пленки, а другая (2) — от внутренней.

При этом происходит интерференция световых волн — сложение двух волн, вследствие которого наблюдается устойчивая во времени картина усиления или ослабления результирующих световых колебаний в различных точках пространства.

Результат интерференции (усиление или ослабление результирующих колебаний) зависит от угла падения света на пленку, ее толщины и длины волны света. Усиление света произойдет в том случае, если преломленная волна 2 отстанет от отраженной волны 1 на целое число длин волн.

Если же вторая волна отстанет от первой на половину длины волны или на нечетное число полуволн, то произойдет ослабление света.

Когерентность волн, отраженных от наружной и внутренней поверхностей пленки, возникает из-за того, что они являются частями одного и того же светового пучка. Цуг волн от каждого излучающего атома разделяется пленкой на два цуга, а затем эти части сводятся вместе и интерферируют.

Юнг понял также, что различие в цвете связано с различием в длине волны (или частоте) световых волн. Световым пучкам различного цвета соответствуют волны с разной длиной волны X.

Для взаимного усиления волн, отличающихся друг от друга длиной волны (углы падения предполагаются одинаковыми), требуется различная толщина пленки.

Следовательно, если пленка имеет неодинаковую толщину, то при освещении ее белым светом должны появиться различные цвета.

Кольца Ньютона

Простая интерференционная картина возникает в тонкой прослойке воздуха между стеклянной пластиной и положенной на нее плосковыпуклой линзой, сферическая поверхность которой имеет большой радиус кривизны. Эта интерференционная картина имеет вид концентрических колец, получивших название колец Ньютона.

Возьмите плосковыпуклую линзу с малой кривизной сферической поверхности и положите ее выпуклостью вниз на стеклянную пластину. Внимательно разглядывая плоскую поверхность линзы (лучше через лупу), вы обнаружите в месте соприкосновения линзы и пластины темное пятно и вокруг него совокупность маленьких радужных колец. Это и есть кольца Ньютона.

Ньютон наблюдал и исследовал их не только в белом свете, но и при освещении линзы одноцветным (монохроматическим) пучком. Оказалось, что радиусы колец одного и того же порядкового номера увеличиваются при переходе от фиолетового конца спектра к красному; красные кольца имеют максимальный радиус.

Расстояния между соседними кольцами уменьшаются с увеличением их радиусов.

Удовлетворительно объяснить, почему возникают кольца, Ньютон не смог. Удалось это Юнгу. Проследим за ходом его рассуждений. В их основе лежит предположение о том, что свет — это волны. Рассмотрим случай, когда волна определенной длины волны падает почти перпендикулярно на плосковыпуклую линзу.

Волна 1 появляется в результате отражения от выпуклой поверхности линзы на границе сред стекло — воздух, а волна 2 — в результате отражения от пластины на границе сред воздух — стекло. Эти волны когерентны: они имеют одинаковую длину волны и постоянную разность фаз, которая возникает из-за того, что волна 2 проходит больший путь, чем волна 1.

Если вторая волна отстает от первой на целое число длин волн, то, складываясь, волны усиливают друг друга.

Напротив, если вторая волна отстает от первой на нечетное число полуволн, то колебания, вызванные ими, будут происходить в противоположных фазах, и волны погасят друг друга.

Если известен радиус кривизны R выпуклой поверхности линзы, то можно вычислить, на каких расстояниях от точки соприкосновения линзы со стеклянной пластиной разности хода таковы, что волны определенной длины волны λ, гасят друг друга. Эти расстояния и являются радиусами темных колец Ньютона. Ведь линии постоянной толщины воздушной прослойки представляют собой окружности. Измерив радиусы колец, можно вычислить длины волн.

Длина световой волны

В результате измерений было установлено, что для красного света λкр = 8 • 10-7 м, а для фиолетового — λф = 4 • 10-7 м. Длины волн, соответствующие другим цветам спектра, принимают промежуточные значения. Для любого цвета длина световой волны очень мала.

Поясним это на простом примере. Представьте себе среднюю морскую волну длиной волны в несколько метров, которая увеличилась настолько, что заняла весь Атлантический океан от берегов Америки до Европы.

Длина световой волны, увеличенной в той же пропорции лишь ненамного превысила бы ширину этой страницы.

Явление интерференции не только доказывает наличие у света волновых свойств, но и позволяет измерить длину волны. Подобно тому как высота звука определяется его частотой, цвет света определяется частотой колебаний или длиной волны.

В природе нет никаких красок, есть лишь волны разных длин волн.

Глаз — сложный физический прибор, способный обнаруживать различие в цвете, которому соответствует весьма незначительная (около 10-6 см) разница в длинах световых волн.

Интересно, что большинство животных не способны различать цвета. Они всегда видят черно-белую картину. Не различают цвета также дальтоники — люди, страдающие цветовой слепотой.

При переходе света из одной среды в другую длина волны изменяется. Это можно увидеть. Заполним водой или другой прозрачной жидкостью с показателем преломления п воздушную прослойку между линзой и пластиной. Радиусы интерференционных колец уменьшатся.

Почему это происходит? Мы знаем, что при переходе света из вакуума в какую-нибудь среду скорость света уменьшается в n раз. Так как υ = λν, то при этом должна уменьшиться в n раз либо частота ν, либо длина волны λ. Но радиусы колец зависят от длины волны. Следовательно, когда свет входит в среду, изменяется в n раз именно длина волны, а не частота.

Интерференция электромагнитных волн

В опытах с генератором СВЧ можно наблюдать интерференцию электромагнитных волн (радиоволн).

Генератор и приемник располагают друг против друга. Затем подносят снизу металлическую пластину в горизонтальном положении. Постепенно поднимая пластину, обнаруживают поочередное ослабление и усиление звука.

Генератор и приемник располагают друг против друга. Затем подносят снизу металлическую пластину в горизонтальном положении. Постепенно поднимая пластину, обнаруживают поочередное ослабление и усиление звука.

Явление объясняется следующим образом. Часть волны из рупора генератора попадает непосредственно в приемный рупор. Другая же ее часть отражается от металлической пластины.

Меняя расположение пластины, мы изменяем разность хода прямой и отраженной волн.

Вследствие этого волны либо усиливают, либо ослабляют друг друга в зависимости от того, равна разность хода целому числу длин волн или нечетному числу полуволн.

Наблюдение интерференции света доказывает, что свет при распространении проявляет волновые свойства. Интерференционные опыты позволяют измерить длину световой волны: она очень мала — от 4 • 10-7 до 8 • 10-7 м.

Источник: «Физика – 11 класс», учебник Мякишев, Буховцев, Чаругин

Следующая страница «Применение интерференции»
Назад в раздел «Физика – 11 класс, учебник Мякишев, Буховцев, Чаругин»

Световые волны. Физика, учебник для 11 класса – Класс!ная физика

Оптика — Скорость света — Принцип Гюйгенса. Закон отражения света — Закон преломления света — Полное отражение — Линза — Построение изображения в линзе — Формула тонкой линзы. Увеличение линзы — Примеры решения задач.

Геометрическая оптика — Дисперсия света — Интерференция механических волн — Интерференция света — Некоторые применения интерференции — Дифракция механических волн — Дифракция света — Дифракционная решетка — Поперечность световых волн.

Поляризация света — Поперечность световых волн и электромагнитная теория света — Примеры решения задач. Волновая оптика — Краткие итоги главы

Источник: http://class-fizika.ru/11_99.html

Интерференция – Всё для чайников

Интерференция света

Подробности Категория: Оптика

Необходимы более веские доказательства того, что свет при распространении ведет себя как волна. Любому волновому движению присущи явления интерференции и дифракции. Для того чтобы быть уверенным в том, что свет имеет волновую природу, необходимо найти экспериментальные доказательства интерференции и дифракции света.

Интерференция — достаточно сложное явление . Чтобы лучше понять его суть, мы вначале остановимся на интерференции механических волн.

Сложение волн. Очень часто в среде одновременно распространяется несколько различных волн. Например, когда в комнате беседуют несколько человек, то звуковые волны накладываются друг на друга. Что при этом происходит?

Проще всего проследить за наложением механических волн, наблюдая волны на поверхности воды.

Если мы бросим в воду два камня, создав этим две кольцевые волны, то нетрудно заметить, что каждая волна проходит сквозь другую и ведет себя в дальнейшем так, как будто бы другой волны совсем не существовало.

Точно так же любое число звуковых волн может одновременно распространяться в воздухе, ничуть не мешая друг другу. Множество музыкальных инструментов в оркестре или в хоре создают звуковые волны, одновременно улавливаемые нашим ухом. Причем ухо в состоянии отличить один звук от другого.

Теперь посмотрим более внимательно, что происходит в местах, где волны накладываются друг на друга. Наблюдая волны на поверхности воды от двух брошенных в воду камней, можно заметить, что некоторые участки поверхности не возмущены, в других же местах возмущение усилилось. Если две волны встречаются в одном месте гребнями, то в этом месте возмущение поверхности воды усиливается.

Если же, напротив, гребень одной волны встречается с впадиной другой, то поверхность воды не будет возмущена.

Вообще же в каждой точке среды колебания, вызванные двумя волнами, просто складываются. Результирующее смещение любой частицы среды представляет собой алгебраическую (т. е. с учетом их знаков) сумму смещений, которые происходили бы при распространении одной из волн в отсутствие другой.

Интерференция. Сложение в пространстве волн, при котором образуется постоянное во времени распределение амплитуд результирующих колебаний, называется интерференцией.Выясним, при каких условиях имеет место интерференция волн. Для этого рассмотрим более подробно сложение волн, образуемых на поверхности воды.

Можно одновременно возбудить две круговые волны в ванне с помощью двух шариков, укрепленных на стержне, который совершает гармонические колебания (рис. 118). В любой точке М на поверхности воды (рис. 119) будут складываться колебания, вызванные двумя волнами (от источников O1 и О2).

Амплитуды колебаний, вызванных в точке М обеими волнами, будут, вообще говоря, отличаться, так как волны проходят различные пути d1 и d2. Но если расстояние l между источниками много меньше этих путей  (l « d1  и l « d2 ) ,   то обе амплитуды
можно считать практически одинаковыми.

Результат сложения волн, приходящих в точку M, зависит от разности фаз между ними. Пройдя различные расстояния d1 и d2, волны имеют разность хода Δd = d2—d1.

Если разность хода равна длине волны λ, то вторая волна запаздывает по сравнению с первой ровно на один период (как раз за период волна проходит путь, равный длине волны).

Следовательно, в этом случае гребни (как и впадины) обеих волн совпадают.

Условие максимумов. На рисунке 120 изображена зависимость от времени смещений X1 и X2 , вызванных двумя волнами при Δd= λ. Разность фаз колебаний равна нулю (или, что то же самое, 2л, так как период синуса равен 2п).

В результате сложения этих колебаний возникает результирующее колебание с удвоенной амплитудой. Колебания результирующего смещения на рисунке показаны цветом (пунктир).

То же самое будет происходить, если на отрезке Δd укладывается не одна, а любое целое число длин волн.

Амплитуда колебаний среды в данной точке максимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна целому числу длин волн:

 Δd=κλ

где к=0,1,2,….

Условие минимумов. Пусть теперь на отрезке Δd укладывается половина длины волны. Очевидно, что при этом вторая волна отстает от первой на половину периода. Разность фаз оказывается равной п, т. е.

колебания будут происходить в противофазе. В результате сложения этих колебаний амплитуда результирующего колебания равна нулю, т. е. в рассматриваемой точке колебаний нет (рис. 121).

То же самое произойдет, если на отрезке укладывается любое нечетное число полуволн.

Амплитуда колебаний среды в данной точке минимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна нечетному числу полуволн:

Δd=(2к+1)λ/2

Если разность хода d2 — d1 принимает промежуточное значениемежду λ и λ/2 , то и амплитуда результирующего колебания принимает некоторое промежуточное значение между удвоенной амплитудой и нулем. Но наиболее важно то, что Амплитуда колебаний в любой точке he меняется с течением времени.

На поверхности воды возникает определенное, неизменное во времени распределение амплитуд колебаний, которое называют интерференционной картиной. На рисунке 122 показан рисунок с фотографии интерференционной картины двух круговых волн от двух источников (черные кружки).

Белые участки в средней части фотографии соответствуют максимумам колебаний, а темные — минимумам.

Когерентные волны. Для образования устойчивой интерференционной картины необходимо, чтобы источники волн имели одинаковую частоту и разность фаз их колебаний была постоянной.

Источники, удовлетворяющие этим условиям, называются когерентными. Когерентными называют и созданные ими волны. Только при сложении когерентных волн образуется устойчивая интерференционная картина.

Если же разность фаз колебаний источников не остается постоянной, то в любой точке среды разность фаз колебаний, возбуждаемых двумя волнами, будет меняться. Поэтому амплитуда результирующих колебаний с течением времени изменяется.

В результате максимумы и минимумы перемещаются в пространстве и интерференционная картина размывается.

Распределение энергии при интерференции. Волны несут энергию. Что же с этой энергией происходит при гашении волн друг другом? Может быть, она превращается в другие формы и в минимумах интерференционной картины выделяется тепло? Ничего подобного.

Наличие минимума в данной точке интерференционной картины означает, что энергия сюда не поступает совсем. Вследствие интерференции происходит перераспределение энергии в пространстве.

Она не распределяется равномерно по всем частицам среды, а концентрируется в максимумах за счет того, что в минимумы не поступает совсем.

Интерференция световых волн

Если свет представляет собой поток волн, то должно наблюдаться явление интерференции света.

Однако получить интерференционную картину (чередование максимумов и минимумов освещенности) с помощью двух независимых источников света, например двух электрических лампочек, невозможно.

Включение еще одной лампочки лишь увеличивает освещенность поверхности, но не создает чередования минимумов и максимумов освещенности.

Выясним, в чем причина этого и при каких условиях можно наблюдать интерференцию света.

Условие когерентности световых волн. Причина состоит в том, что световые волны, излучаемые различными источниками, не согласованы друг с другом.

Для получения же устойчивой интерференционной картины нужны согласованные волны. Они должны иметь одинаковые длины волн и постоянную разность фаз в любой точке пространства.

Напомним, что такие согласованные волны с одинаковыми длинами волн и постоянной разностью фаз называются когерентными.

Почти точного равенства длин волн от двух источников добиться нетрудно. Для этого достаточно использовать хорошие светофильтры, пропускающие свет в очень узком интервале длин волн. Но невозможно осуществить Постоянство разности фаз от двух независимых источников.

Атомы источников излучают свет независимо друг от друга отдельными «обрывками» (цугами) синусоидальных волн, имеющими длину около метра. И такие цуги волн от обоих источников налагаются друг на друга.

В результате амплитуда колебаний в любой точке пространства хаотически меняется со временем в зависимости от того, как в данный момент времени цуги волн от различных источников сдвинуты друг относительно друга по фазе.

Волны от различных источников света некогерентны из-за того, что разность фаз волн не остается постоянной. Никакой устойчивой картины с определенным распределением максимумов и минимумов освещенности в пространстве не наблюдается.

Интерференция в тонких пленках. Тем не менее интерференцию света удается наблюдать. Курьез состоит в том, что ее наблюдали очень давно, но только не отдавали себе в этом отчета.

Вы тоже много раз видели интерференционную картину, когда в детстве развлекались пусканием мыльных пузырей или наблюдали за радужным переливом цветов тонкой пленки керосина или нефти на поверхности воды.

«Мыльный пузырь, витая в воздухе… зажигается всеми оттенками цветов, присущими окружающим предметам. Мыльный пузырь, пожалуй, самое изысканное чудо природы» (Марк Твен).

Именно интерференция света делает мыльный пузырь столь достойным восхищения.

Английский ученый Томас Юнг первым пришел к гениальной мысли о возможности объяснения цветов тонких пленок сложением волн 1 и 2 (рис. 123), одна из которых (1) отражается от наружной поверхности пленки, а вторая (2) —от внутренней.

При этом происходит интерференция световых волн — сложение двух волн, вследствие которого наблюдается устойчивая во времени картина усиления или ослабления результирующих световых колебаний в различных точках пространства.

Результат интерференции (усиление или ослабление результирующих колебаний) зависит от угла падения света на пленку, ее толщины и длины волны. Усиление света произойдет в том случае, если преломленная волна 2 отстанет от отраженной волны 1 на целое число длин волн.

Если же вторая волна отстанет от первой на половину длины волны или на нечетное число полуволн, то произойдет ослабление света.

Когерентность волн, отраженных от наружной и внутренней поверхностей пленки, обеспечивается тем, что они являются частями одного и того же светового пучка. Цуг волн от каждого излучающего атома разделяется пленкой на два, а затем эти части сводятся вместе и интерферируют.

Юнг также понял, что различие в цвете связано с различием в длине волны (или частоте световых волн). Световым пучкам различного цвета соответствуют волны различной длины. Для взаимного усиления волн, отличающихся друг от друга длиной (углы падения предполагаются одинаковыми), требуется различная толщина пленки.

Следовательно, если пленка имеет неодинаковую толщину, то при освещении ее белым светом должны появиться различные цвета.

Кольца Ньютона. Простая интерференционная картина возникает в тонкой прослойке воздуха между стеклянной пластиной и положенной на нее плоско-выпуклой линзой, сферическая поверхность которой имеет большой радиус кривизны. Эта интерференционная картина имеет вид концентрических колец, получивших название кольца Ньютона.

Возьмите плоско-выпуклую линзу с малой кривизной сферической поверхности и положите ее на стеклянную пластину. Внимательно разглядывая плоскую поверхность линзы (лучше через лупу), вы обнаружите в месте соприкосновения линзы и пластины темное пятно и вокруг него совокупность маленьких радужных колец. Расстояния между соседними кольцами быстро убывают с увеличением их радиуса (рис.111).

Это и есть кольца Ньютона. Ньютон наблюдал и исследовал их не только в белом свете, но и при освещении линзы одноцветным (монохроматическим) пучком. Оказалось, что радиусы колец одного и того же порядкового номера увеличиваются при переходе от фиолетового конца спектра к красному; красные кольца имеют максимальный радиус . Все это вы можете проверить с помощью самостоятельных наблюдений.

Удовлетворительно объяснить, почему возникают кольца, Ньютон не смог. Удалось это Юнгу. Проследим за ходом его рассуждений. В их основе лежит предположение о том, что свет — это волны. Рассмотрим случай, когда волна определенной длины падает почти перпендикулярно на плоско-выпуклую линзу (рис. 124).

Волна 1 появляется в результате отражения от выпуклой поверхности линзы на границе стекло — воздух, а волна 2 — в результате отражения от пластины на границе воздух — стекло. Эти волны когерентны: они имеют одинаковую длину и постоянную разность фаз, которая возникает из-за того, что волна 2 проходит больший путь, чем волна 1.

Если вторая волна отстает от первой на целое число длин волн, то, складываясь, волны усиливают друг друга. Вызываемые ими колебания происходят в одной фазе.

Напротив, если вторая волна отстает от первой на нечетное число полуволн, то колебания, вызванные ими, будут происходить в противоположных фазах и волны гасят друг друга.

Если известен радиус кривизны R поверхности линзы, то можно вычислить, на каких расстояниях от точки соприкосновения линзы со стеклянной пластиной разности хода таковы, что волны определенной длины λ гасят друг друга. Эти расстояния и являются радиусами темных колец Ньютона.

Ведь линии постоянной толщины воздушной прослойки представляют собой окружности. Измерив радиусы колец, можно вычислить длины волн.

Длина световой волны. Для красного света измерения дают λкр  = 8•10-7 м, а для фиолетового — λф = 4•10-7 м. Длины волн, соответствующие другим цветам спектра, принимают промежуточные значения.

Для любого цвета длина световой волны очень мала. Представьте себе среднюю морскую волну длиной в несколько метров, которая увеличилась настолько, что заняла весь Атлантический океан от берегов Америки до Европы.

Длина световой волны в том же увеличении лишь ненамного превысила бы ширину этой страницы.

Явление интерференции не только доказывает наличие у света волновых свойств, но и позволяет измерить длину волны. Подобно тому как высота звука определяется его частотой, цвет света определяется частотой колебаний или длиной волны.

Вне нас в природе нет никаких красок, есть лишь волны разной длины.

Глаз — сложный физический прибор, способный обнаруживать различие в цвете, которому соответствует весьма незначительная (около 10-6 см) разница в длине световых волн. Интересно, что большинство животных неспособны различать цвета. Они всегда видят чернобелую картину.

Не различают цвета также дальтоники — люди, страдающие цветовой слепотой.

При переходе света из одной среды в другую длина волны изменяется. Это можно обнаружить так. Заполним водой или другой прозрачной жидкостью с показателем преломления п воздушную прослойку между линзой и пластиной. Радиусы интерференционных колец уменьшатся.

Почему это происходит? Мы знаем, что при переходе света из вакуума в какую-нибудь среду скорость света уменьшается в n раз. Так как v = λv, то при этом должна уменьшиться в n раз либо частота, либо длина волны. Но радиусы колец зависят от длины волны. Следовательно, когда свет входит в среду, изменяется в n раз именно длина волны, а не частота.

Интерференция электромагнитных волн. На опытах с генератором СВЧ можно наблюдать интерференцию электромагнитных (радио) волн.

Генератор и приемник располагают друг против друга (рис. 125). Затем подводят снизу металлическую пластину в горизонтальном положении. Постепенно поднимая пластину, обнаруживают поочередное ослабление и усиление звука.Явление объясняется следующим образом.

Часть волны из рупора генератора непосредственно попадает в приемный рупор. Другая же ее часть отражается от металлической пластины. Меняя расположение пластины, мы изменяем разность хода прямой и отраженной волн.

Вследствие этого волны либо усиливают, либо ослабляют друг друга в зависимости от того, равна ли разность хода целому числу длин волн или нечетному числу полуволн.

Наблюдение интерференции света доказывает, что свет при распространении обнаруживает волновые свойства.

Интерференционные опыты позволяют измерить длину световой волны: она очень мала—от 4•10-7 до 8•10-7 м.

Интерференция двух волн. Бипризма Френеля – 1      

Интерференция двух волн. Бипризма Френеля – 2      

Интерферометр Маха-Цандера: его устройство      

Интерферометр Маха-Цандера. Поворот стеклянной пластинки       

Интерферометр Маха-Цандера. «Деформация» основания»       

Стоячие трехсантиметровые волны       

Трехсантиметровые волны: стоячие волны в резонаторе       

Дециметровая стоячая волна        

«Стоячая волна» на экране осциллографа         

Поперечные стоячие волны на линейке со свободным концом          

Поперечные стоячие волны на резиновом шнуре        

Поперечные стоячие волны на проводе с переменным током         

Настройщик фортепиано и другие          

Поющая Труба           

Источник: https://forkettle.ru/vidioteka/estestvoznanie/41-fizika/optika/42-interferentsiya

Интерференция света

Интерференция света

Интерференция света
Явление интерференции свидетельствует о том, что свет — это волна.Интерференцией световых волн называется сложение двух когерентных волн, вследствие которого наблюдается усиление или ослабление результирующих световых колебаний в различных точках пространства.
Условия интерференцииВолны должны быть когерентны. Когерентность – согласованность. В простейшем случае когерентными являются волны одинаковой длины, между которыми существует постоянная разность фаз.
Все источники света, кроме лазера, некогерентны, однако Т. Юнг впервые пронаблюдал (1802) явление интерференции, разделив волну на две с помощью двойной щели. Свет от точечного монохроматического источника S падал на два небольших отвер­стия на экране. Эти отверстия действуют как два когерентных источника света S1 и S2.  Волны от них интерферируют в области перекрытия, проходя разные пути: ℓ1 и ℓ2.  На экране наблюдается чередование светлых и темных полос.
Условие максимума.Пусть разность хода между двумя точками ,тогда условие максимума:   т. е. на разности хода волн укладывается четное число полуволн (k= 1, 2, 3, …).или  
Условие минимумаПусть разность хода между двумя точками ,тогда условие минимума: ,т. е. на разности хода волн укладывается нечетное число полуволн (k= 1, 2, 3, …).
Интерференция света в тонких пленкахРазличные цвета тонких пленок — результат интерфе­ренции двух волн, отражаю­щихся от нижней и верхней по­верхностей пленки. При отражении от верх­ней поверхности пленки проис­ходит потеря полуволны. Сле­довательно, оптическая раз­ность хода .Тогда условие максимального усиле­ния интерферирующих лучей в отраженном свете следую­щее: .Если потерю полуволны не учитывать, то   .
Кольца НьютонаИнтерференционная карти­на в тонкой прослойке воздуха между стеклянными пластина­ми — кольца Ньютона.Волна 1 — результат отра­жения ее от точки А (граница стекло —воздух). Волна 2 — отражение от плоской пласти­ны (точка В, граница воздух — стекло). Волны когерентны: возникает интерференционная картина в прослойке  воздуха между точками А и В в виде-концентрических колец. Зная радиусы колец, можно вычислить длину волны, используя формулу , где r – радиус кольца, R — радиус кри­визны выпуклой поверхности линзы.
Использование интерференции в технике
Проверка качества обра­ботки поверхности до одной де­сятой длины волны. Несовершенство обра­ботки определяют но искрив­лению интерференционных по­лос, образующихся при отра­жении света от проверяемой поверхности. Интерферометры служат для точного измерения показателя преломления газов и других веществ, длин световых волн.
Просветление оптики. Объективы фотоаппаратов и кинопроекторов, перископы под­водных лодок и другие оптические устройства состоят из большого числа оптических стекол, линз, призм. Каждая отполиро­ванная поверхность стекла отражает около 5% падающего на нее света. Чтобы уменьшить долю отражаемой энергии, исполь­зуется явление интерференции света.
На поверхность оптическо­го стекла наносят тонкую пленку. Для того чтобы волны 1 и 2 ослабляли друг друга, должно выполняться условие минимума. В отраженном свете разность хода волн равна:  . Потеря полуволны происходит при отражении как от пленки, так и от стекла (показатель преломления стекла больше, чем пленки), поэтому, эту потерю можно не учитывать. Следо­вательно, , где n – показатель преломления пленки; h — толщина пленки. Минимальная толщина пленки будет при k=0. Поэтому . При равенстве амплитуд гашение света будет полным. Толщину пленки подбирают так, чтобы пол­ное гашение при нормальном падении имело место для длин волн средней части спектра (для зеленого цвета): .Чтобы рассчитать толщину пленки в этой формуле необходимо взять длину волны и показатель преломления зеленого света.Лучи красного и фиолетового цвета ослабляются незначительно.поэтому объективы оптических приборов в отраженном свете имеют сиреневые оттенки

Источник: https://www.eduspb.com/node/1808

Интерференция света. Когерентность. Оптическая разность хода. Распределение интенсивности света в интерференционном поле. Интерференция в тонких пластинах. Интерферометры

Интерференция света

1) Интерференция света.

Интерференция света – это сложение световых волн, при котором обычно наблюдается характерное пространственное распределение интенсивности света (интерференционная картина) в виде чередующихся светлых и тёмных полос вследствие нарушения принципа сложения интенсивностей.

Интерференция света возникает только в случае, если разность фаз постоянна во времени, т. е. волны когерентны.

Явление наблюдается при наложении двух или нескольких световых пучков. Интенсивность света в области перекрывания пучков имеет характер чередующихся светлых и темных полос, причем в максимумах интенсивность больше, а в минимумах меньше суммы интенсивностей пучков. При использовании белого света интерференционные полосы оказываются окрашенными в различные цвета спектра.

Интерференция возникает при условии, что:

1) Частоты интерферирующих волн одинаковы.

2) Возмущения, если они имеют векторный характер, направлены вдоль одной прямой.

3) Складываемые колебания происходят непрерывно в течение всего времени наблюдения.

2) Когерентность.

КОГЕРЕНТНОСТЬ — согласованное протекание в пространстве и во времени нескольких колебательных или волновых процессов, при котором разность их фаз остается постоянной.

Это означает, что волны (звук, свет, волны на поверхности воды и пр.) распространяются синхронно, отставая одна от другой на вполне определенную величину.

При сложении когерентных колебаний возникает интерференция; амплитуду суммарных колебаний определяет разность фаз.

3) Оптическая разность хода.

Разность хода лучей, разность оптических длин путей двух световых лучей, имеющих общие начальную и конечную точки. Понятие разности хода играет основную роль в описании интерференции света и дифракции света. Расчёты распределения световой энергии в оптических системах основаны на вычислении разности хода проходящих через них лучей (или пучков лучей).

Оптическая разность хода лучей – разность путей, которые проходит колебание от источника до места встречи: φ1 – φ2 = 2π/λ0 .

 где a – амплитуда волны, k = 2π / λ – волновое число, λ – длина волны; I = A2 –  физическая величина, равная квадрату амплитуды электрического поля волны, т.е интенсивность, и Δ = r2 – r1 – так называемая разность хода.

4) Распределение интенсивности света в интерференционном поле.

Интерференционный максимум (светлая полоса) достигается в тех точках пространства, в которых Δ = mλ (m = 0, ±1, ±2, …), где Δ = r2 – r1 – так называемая разность хода. При этом Imax = (a1 + a2)2 > I1 + I2.

Интерференционный минимум (темная полоса) достигается при Δ = mλ + λ / 2. Минимальное значение интенсивности Imin = (a1 – a2)2 < I1 + I2. На рис. 3.7.

4 показано распределение интенсивности света в интерференционной картине в зависимости от разности хода Δ.

 Распределение интенсивности в интерференционной картине. Целое число m – порядок интерференционного максимума.

Максимумы располагаются в тех точках, для которых в разности хода лучей укладывается целое число длин волн (чётное число полуволн), минимумы – нечётное число полуволн.

Целое число m – порядок максимума.

5) Интерференция в тонких пластинах.Интерферометры.

Интерференция в тонких пленках. Часто можно наблюдать, что тонкие прозрачные пленки приобретают радужную окраску – это явление обусловлено интерференцией света. Пусть свет от точечного источника S падает на поверхность прозрачной пленки.

Лучи частично отражаются от поверхности пленки, обращенной к источнику, а частично проходят в толщу пленки, отражаются от другой ее поверхности и, снова преломившись, выходят наружу. Т. о., в области над поверхностью пленки происходит наложение двух волн, образовавшихся в результате отражения исходной волны от обеих поверхностей пленки.

Чтобы наблюдать интерференционную картину, нужно собрать интерференционные лучи, например, поставив на их пути собирательную линзу, а за ней на некотором расстоянии экран для наблюдения.

Можно вывести, что оптическая разность хода равна О. р. х. = 2h√(n2-sin2i) + λ/2, где h – толщина пленки, i – угол падения лучей, n – показатель преломления вещества пленки, λ – длина волны.

Т. о., для однородной пленки оптическая разность хода зависит от двух факторов: угла падения луча i и толщины пленки h в месте падения луча.

Плоскопараллельная пленка. Поскольку толщина пленки всюду одинакова, то о.р.х. зависит только от угла падения. Поэтому для всех пар лучей с одинаковым углом наклона о.р.х.

одинаковы, и в результате интерференции этих лучей на экране возникает линия, вдоль которой интенсивность постоянна.

С ростом угла падения разность хода непрерывно уменьшается, периодически становясь равной то четному, то нечетному числу полуволн, поэтому наблюдается чередование светлых и темных полос.

Неоднородная пленка. С ростом толщины пленки о.р.х. лучей непрерывно растет, поочередно становясь равной то четному, то нечетному числу полуволн, следовательно, наблюдается чередование темных и светлых полос – полос равной толщины, образованных лучами, идущими из мест с одинаковой толщиной пленки.

Интерферометр – измерительный прибор, в котором используется интерференция волн. Наибольшее распространение получили оптические интерферометры.

Они применяются для измерения длин волн спектральных линий, показателей преломления прозрачных сред, абсолютных и относительных длин, угловых размеров звёзд и пр.

, для контроля качества оптических деталей и их поверхностей и пр.

Принцип действия всех интерферометров одинаков, и различаются они лишь методами получения когерентных волн и тем, какая величина непосредственно измеряется. Пучок света с помощью того или иного устройства пространственно разделяется на два или большее число когерентных пучков, которые проходят различные оптические пути, а затем сводятся вместе.

В месте схождения пучков наблюдается интерференционная картина, вид которой, т. е.

форма и взаимное расположение интерференционных максимумов и минимумов, зависит от способа разделения пучка света на когерентные пучки, от числа интерферирующих пучков, разности их оптических путей (оптической разности хода), относительной интенсивности, размеров источника, спектрального состава света.

Дифракция света. Принцип Гюйгенса-Френеля. Дифракция Френеля и Фраунгофера. Дифракционная решетка. Дифракционные спектры и спектрографы. Дифракция рентгеновских лучей в кристаллах. Формула Вульфа-Брэггов.

1) Дифракция света.

Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий.

Свет при определенных условиях может заходить в область геометрической тени.

Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск, шарик или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина – система чередующихся светлых и темных колец. Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос.

2) Принцип Гюйгенса-Френеля.

Явление дифракции объясняется с помощью принципа Гюйгенса, согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени.

Пусть плоская волна нормально падает на отверстие в непрозрачном экране. Каждая точка участка волнового фронта, выделенного отверстием, служит источником вторичных волн  (в однородной изотопной среде они сферические).

Построив огибающую вторичных волн для некоторого момента времени, видим, что фронт волны заходит в область геометрической тени, т.е. волна огибает края отверстия.

Френель вложил в принцип Гюйгенса физический смысл, дополнив его идеей интерференции вторичных волн.

При рассмотрении дифракции Френель исходил из нескольких основных положений, принимаемых без доказательства. Совокупность этих утверждений и называется принципом Гюйгенса–Френеля.

Согласно принципу Гюйгенса, каждую точку фронта волны можно рассматривать как источник вторичных волн.

Френель существенно развил этот принцип.

· Все вторичные источники фронта волны, исходящей из одного источника, когерентны между собой.

· Равные по площади участки волновой поверхности излучают равные интенсивности (мощности).

· Каждый вторичный источник излучает свет преимущественно в направлении внешней нормали к волновой поверхности в этой точке. Амплитуда вторичных волн в направлении, составляющем угол α с нормалью, тем меньше, чем больше угол α, и равна нулю при .

· Для вторичных источников справедлив принцип суперпозиции: излучение одних участков волновой поверхности не влияет на излучение других (если часть волновой поверхности прикрыть непрозрачным экраном, вторичные волны будут излучаться открытыми участками так, как если бы экрана не было).

Принцип Гюйгенса — Френеля формулируется следующим образом: Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

3) Дифракция Френеля и Фраунгофера.

Френель предложил разбить волновую поверхность падающей волны в месте расположения препятствия на кольцевые зоны (зоны Френеля) по следующему правилу: расстояние от границ соседних зон до точки P должны отличается на половину длины волны, т. е. , где L – расстояние от экрана до точки наблюдения.

Легко найти радиусы ρm зон Френеля:

Так в оптике λ

Источник: https://studopedia.ru/20_60765_interferentsiya-sveta-kogerentnost-opticheskaya-raznost-hoda-raspredelenie-intensivnosti-sveta-v-interferentsionnom-pole-interferentsiya-v-tonkih-plastinah-interferometri.html

Волновая оптика. Интерференция света . урок. Физика 11 Класс

Интерференция света

Благодаря прошлым урокам нам известно, что свет является совокупностью прямолинейных лучей, определенным образом распространяющихся в пространстве. Однако для объяснения свойств некоторых явлений мы не можем пользоваться представлениями геометрической оптики, то есть не можем игнорировать волновые свойства света.

Например, при прохождении солнечного света через стеклянную призму на экране возникает картина чередующихся цветных полос (рис. 1), которые называют спектром; при внимательном рассмотрении мыльного пузыря видна его причудливая окраска (рис. 2), постоянно меняющаяся с течением времени.

Для объяснения этих и других подобных примеров мы будем использовать теорию, которая опирается на волновые свойства света, то есть волновую оптику.

Рис. 1. Разложение света в спектр

Рис. 2. Мыльный пузырь

На этом уроке мы рассмотрим явление, которое называется интерференцией света. С помощью этого явления ученые в XIX веке доказали, что свет имеет волновую природу, а не корпускулярную.

Явление интерференции заключается в следующем: при наложении друг на друга в пространстве двух или более волн возникает устойчивая картина распределения амплитуд, при этом в некоторых точках пространства результирующая амплитуда является суммой амплитуд исходных волн, в других точках пространства результирующая амплитуда становится равной нулю. При этом на частоты и фазы исходно складывающихся волн должны быть наложены определенные ограничения.

Пример сложения двух световых волн

Увеличение или уменьшение амплитуды зависит от того, с какой разностью фаз две складывающиеся волны приходят в данную точку.

На рис. 3 показан случай сложения двух волн от точечных источников  и , находящихся на расстоянии  и  от точки M, в которой производят измерения амплитуды. Обе волны имеют в точке M в общем случае различные амплитуды, так как до попадания в эту точку они проходят разные пути и их фазы различаются.

Рис. 3. Сложение двух волн

На рис. 4 показано, как зависит результирующая амплитуда колебания в точке M от того, в каких фазах приходят ее две синусоидальные волны.

Когда гребни совпадают, то результирующая амплитуда максимально увеличивается. Когда гребень совпадает со впадиной, то результирующая амплитуда обнуляется.

В промежуточных случаях результирующая амплитуда имеет значение между нулем и суммой амплитуд складывающихся волн (рис. 4).

Рис. 4. Сложение двух синусоидальных волн

Максимальное значение результирующей амплитуды будет наблюдаться в том случае, когда разность фаз между двумя складывающимися волнами равна нулю. То же самое должно наблюдаться, когда разность фаз равна , так как  – это период функции синуса (рис. 5).

Рис. 5. Максимальное значение результирующей амплитуды

Амплитуда колебаний в данной точке максимальна, если разность хода двух волн, возбуждающих колебание в этой точке, равна целому числу длин волн или четному числу полуволн (рис. 6).

Рис. 6. Максимальная амплитуда колебаний в точке M

, где .

Амплитуда колебаний в данной точке минимальна, если разность хода двух волн, возбуждающих колебание в этой точке, равна нечетному числу полуволн или полуцелому числу длин волн (рис. 7).

Рис. 7. Минимальная амплитуда колебаний в точке M

, где .

Интерференцию можно наблюдать только в случае сложения когерентных волн (рис. 8).

Рис. 8. Интерференция

Когерентные волны – это волны, которые имеют одинаковые частоты, постоянную во времени в данной точке разность фаз (рис. 9).

Рис. 9. Когерентные волны

Если волны не когерентны, то в любую точку наблюдения две волны приходят со случайной разностью фаз. Таким образом, амплитуда после сложения двух волн также будет случайной величиной, которая изменяется с течением времени, и эксперимент будет показывать отсутствие интерференционной картины.

Некогерентные волны – это волны, у которых разность фаз непрерывно меняется (рис. 10).

Рис. 10. Некогерентные волны

Существует много ситуаций, когда можно наблюдать интерференцию световых лучей. Например, бензиновое пятно в луже (рис. 11), мыльный пузырь (рис. 2).

Рис. 11. Бензиновое пятно в луже

Пример с мыльными пузырями относится к случаю так называемой интерференции в тонких пленках. Английский ученый Томас Юнг (рис. 12) первым пришел к мысли о возможности объяснения цветов тонких пленок сложением волн, одна из которых отражается от наружной поверхности пленки, а другая – от внутренней.

Рис. 12. Томас Юнг (1773-1829)

Результат интерференции зависит от угла падения света на пленку, ее толщины и длины волны света. Усиление произойдет в том случае, если преломленная волна отстанет от отраженной на целое число длин волн. Если же вторая волна отстанет на половину волны или на нечетное число полуволн, то произойдет ослабление света (рис. 13).

Рис. 13. Отражение световых волн от поверхностей пленки

Когерентность волн, отраженных от внешней и внутренней поверхности пленки, объясняется тем, что обе эти волны являются частями одной и той же падающей волны.

Различие в цветах соответствует тому, что свет может состоять из волн различной частоты (длины). Если свет состоит из волн с одинаковыми частотами, то он называется монохроматическим и наш глаз воспринимает его как один цвет.

Монохроматический свет (от др.-греч. μόνος – один, χρῶμα – цвет) – электромагнитная волна одной определенной и строго постоянной частоты из диапазона частот, непосредственно воспринимаемых человеческим глазом. Происхождение термина связано с тем, что различие в частоте световых волн воспринимается человеком как различие в цвете.

Однако по своей физической природе электромагнитные волны видимого диапазона не отличаются от волн других диапазонов (инфракрасного, ультрафиолетового, рентгеновского и т. д.), и по отношению к ним также используют термин «монохроматический» («одноцветный»), хотя никакого ощущения цвета эти волны не дают.

Свет, состоящий из волн с различными длинами, называется полихроматическим (свет от солнца).

Таким образом, если на тонкую пленку падает монохроматический свет, то интерференционная картина будет зависеть от угла падения (при некоторых углах волны будут усиливать друг друга, при других углах – гасить).

При полихроматическом свете для наблюдения интерференционной картины удобно использовать пленку переменной толщины, при этом волны с разными длинами будут интерферировать в разных точках, и мы можем получить цветную картинку (как в мыльном пузыре).

Существуют специальные приборы – интерферометры (рис. 14, 15), с помощью которых можно измерять длины волн, показатели преломления различных веществ и другие характеристики.

Рис. 14. Интерферометр Жамена

Рис. 15. Интерферометр Физо

К примеру, в 1887 году два американских физика, Майкельсон и Морли (рис. 16), сконструировали специальный интерферометр (рис. 17), с помощью которого они собирались доказать или опровергнуть существование эфира. Этот опыт является одним из самых знаменитых экспериментов в физике.

Рис. 16. А. Майкельсон и Э. Морли

Рис. 17. Звездный интерферометр Майкельсона

Интерференцию применяют и в других областях человеческой деятельности (для оценки качества обработки поверхности, для просветления оптики, для получения высокоотражающих покрытий).

Условие

Два полупрозрачных зеркала расположены параллельно друг другу. На них перпендикулярно плоскости зеркал падает световая волна частотой  (рис. 18). Чему должно быть равно минимальное расстояние между зеркалами, чтобы наблюдался минимум интерференции проходящих лучей первого порядка?

Рис. 18. Иллюстрация к задаче

Дано:  

Найти:

Решение

Один луч пройдет сквозь оба зеркала. Другой пройдет сквозь первое зеркало, отразится от второго и первого и пройдет сквозь второе. Разность хода этих лучей составит удвоенное расстояние между зеркалами.

Номер минимума соответствует значению целого числа .

Длина волны равна:

,

где  – скорость света.

Подставим в формулу разности хода значение  и значение длины волны:

Ответ: .

Для получения когерентных световых волн при использовании обычных источников света применяют методы деления волнового фронта. При этом световая волна, испущенная каким-либо источником, делится на две или более частей, когерентных между собой.

1. Получение когерентных волн методом Юнга

Источником света служит ярко освещенная щель, от которой световая волна падает на две узкие щели  и  параллельные исходной щели S (рис. 19). Таким образом, щели  и  служат когерентными источниками. На экране в области BC наблюдается интерференционная картина в виде чередующихся светлых и темных полос.

Рис. 19. Получение когерентных волн методом Юнга

2. Получение когерентных волн с помощью бипризмы Френеля

Данная бипризма состоит из двух одинаковых прямоугольных призм с очень малым преломляющим углом, сложенных своими основаниями.

Свет от источника преломляется в обеих призмах, в результате этого за призмой распространяются лучи, как бы исходящие из мнимых источников  и  (рис. 20). Эти источники являются когерентными.

Таким образом, на экране в области BC наблюдается интерференционная картина.

Рис. 20. Получение когерентных волн с помощью бипризмы Френеля

3. Получение когерентных волн с помощью разделения по оптической длине пути

Две когерентные волны создаются одним источником, но до экрана проходят разные геометрические пути длины  и  (рис. 21). При этом каждый луч идет в среде со своим абсолютным показателем преломления. Разность фаз между волнами, приходящими в точку на экране, равна следующей величине:

,

гдеи  – длины волн в средах, показатели преломления которых равны соответственно  и .

Рис. 21. Получение когерентных волн с помощью разделения по оптической длине пути

Произведение геометрической длины пути на абсолютный показатель преломления среды называется оптической длиной пути.

,

 – оптическая разность хода интерферирующих волн.

С помощью интерференции можно оценить качество обработки поверхности изделия с точностью до  длины волны.

Для этого нужно создать тонкую клиновидную прослойку воздуха между поверхностью образца и очень гладкой эталонной пластиной.

Тогда неровности поверхности до  см вызовут заметное искривление интерференционных полос, образующихся при отражении света от проверяемых поверхностей и нижней грани (рис. 22).

Рис. 22. Проверка качества обработки поверхности

Множество современной фототехники использует большое количество оптических стекол (линзы, призмы и т. д.).

Проходя через такие системы, световой поток испытывает многократное отражение, что пагубно влияет на качество изображения, поскольку при отражении теряется часть энергии.

Чтобы избежать этого эффекта, необходимо применять специальные методы, одним из которых является метод просветления оптики.

Просветление оптики основано на явлении интерференции. На поверхность оптического стекла, например линзы, наносят тонкую пленку с показателем преломления, меньшим показателя преломления стекла.

На рис. 23 показан ход луча, падающего на поверхность раздела под небольшим углом. Для упрощения все вычисления делаем для угла, равного нулю.

Рис. 23. Просветление оптики

Разность хода световых волн 1 и 2, отраженных от верхней и нижней поверхности пленки, равна удвоенной толщине пленки:

Длина волны в пленке меньше длины волны в вакууме в n раз (n – показатель преломления пленки):

Для того чтобы волны 1 и 2 ослабляли друг друга, разность хода должна быть равна половине длины волны, то есть:

Если амплитуды обеих отраженных волн одинаковы или очень близки друг к другу, то гашение света будет полным. Чтобы добиться этого, подбирают соответствующим образом показатель преломления пленки, так как интенсивность отраженного света определяется отношением коэффициентов преломления двух сред.

Список литературы

  1. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. – М.: Просвещение, 2010.
  2. Касьянов В.А. Физика. 11 кл.: Учеб. для общеобразоват. учреждений. – М.: Дрофа, 2005.
  3. Генденштейн Л.Э., Дик Ю.И., Физика 11. – М.: Мнемозина.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «Reprint1.narod.ru» (Источник).
  2. Интернет-портал «Eduspb.com» (Источник).
  3. Интернет-портал «.com» (Источник).
  4. Интернет-портал «Toehelp.ru» (Источник).
  5. Интернет-портал «Exir.ru» (Источник).

Домашнее задание

  1. Вопросы в конце параграфа 67 (стр. 202), вопросы в конце параграфа 68 (стр. 206) – Мякишев Г.Я. Физика 11 (см. список рекомендованной литературы)    
  2. Где используется явление интерференции?
  3. Каково условие максимумов интерференции?
  4. В некоторую точку на экране приходит два когерентных излучения с оптической разностью хода 1,2 мкм. Длина волны этих лучей в вакууме – 600 нм. Определите, что произойдет в этой точке в результате интерференции в трех случаях: а) свет идет в воздухе; б) свет идет в воде; в) свет идет в стекле с показателем преломления 1,5.

Источник: https://interneturok.ru/lesson/physics/11-klass/boptikab/volnovaya-optika-interferentsiya-sveta?testcases=

3.7. Интерференция световых волн

Интерференция света


Интерференция – одно из ярких проявлений волновой природы света. е и красивое явление наблюдается при наложении двух или нескольких световых пучков.

Интенсивность света в области перекрывания пучков имеет характер чередующихся светлых и темных полос, причем в максимумах интенсивность больше, а в минимумах меньше суммы интенсивностей пучков. При использовании белого света интерференционные полосы оказываются окрашенными в различные цвета спектра.

С интерференционными явлениями мы сталкиваемся довольно часто: цвета масляных пятен на асфальте, окраска замерзающих оконных стекол, причудливые цветные рисунки на крыльях некоторых бабочек и жуков – все это проявление интерференции света.

Первый эксперимент по наблюдению интерференции света в лабораторных условиях принадлежит И. Ньютону.

Он наблюдал интерференционную картину, возникающую при отражении света в тонкой воздушной прослойке между плоской стеклянной пластиной и плосковыпуклой линзой большого радиуса кривизны (рис. 3.7.1).

Интерференционная картина имела вид концентрических колец, получивших название колец Ньютона (рис. 3.7.2).

Рисунок 3.7.1.

Наблюдение колец Ньютона. Интерференция возникает при сложении волн, отразившихся от двух сторон воздушной прослойки. «Лучи» 1 и 2 – направления распространения волн; h – толщина воздушного зазора

Рисунок 3.7.2.

Кольца Ньютона в зеленом и красном свете

Ньютон не смог с точки зрения корпускулярной теории объяснить, почему возникают кольца, однако он понимал, что это связано с какой-то периодичностью световых процессов (см. § 3.6).

Первым интерференционным опытом, получившим объяснение на основе волновой теории света, явился опыт Юнга (1802 г.). В опыте Юнга свет от источника, в качестве которого служила узкая щель S, падал на экран с двумя близко расположенными щелями S1 и S2 (рис. 3.7.3).

Проходя через каждую из щелей, световой пучок уширялся вследствие дифракции, поэтому на белом экране Э световые пучки, прошедшие через щели S1 и S2, перекрывались.

В области перекрытия световых пучков наблюдалась интерференционная картина в виде чередующихся светлых и темных полос.

Рисунок 3.7.3.

Схема интерференционного опыта Юнга

Юнг был первым, кто понял, что нельзя наблюдать интерференцию при сложении волн от двух независимых источников. Поэтому в его опыте щели S1 и S2, которые в соответствии с принципом Гюйгенса можно рассматривать как источники вторичных волн, освещались светом одного источника S.

При симметричном расположении щелей вторичные волны, испускаемые источниками S1 и S2, находятся в фазе, но эти волны проходят до точки наблюдения P разные расстояния r1 и r2. Следовательно, фазы колебаний, создаваемых волнами от источников S1 и S2 в точке P, вообще говоря, различны.

Таким образом, задача об интерференции волн сводится к задаче о сложении колебаний одной и той же частоты, но с разными фазами.

Утверждение о том, что волны от источников S1 и S2 распространяются независимо друг от друга, а в точке наблюдения они просто складываются, является опытным фактом и носит название принципа суперпозиции.

Монохроматическая (или синусоидальная) волна, распространяющаяся в направлении радиус-вектора , записывается в виде

где a – амплитуда волны, k = 2π / λ – волновое число, λ – длина волны, ω = 2πν – круговая частота. В оптических задачах под E следует понимать модуль вектора напряженности электрического поля волны.

При сложении двух волн в точке P результирующее колебание также происходит на частоте ω и имеет некоторую амплитуду A и фазу φ:

E = a1 · cos (ωt – kr1) + a2 · cos (ωt – kr2) = A · cos (ωt – φ).

Приборов, которые способны были бы следить за быстрыми изменениями поля световой волны в оптическом диапазоне, не существует; наблюдаемой величиной является поток энергии, который прямо пропорционален квадрату амплитуды электрического поля волны. Физическую величину, равную квадрату амплитуды электрического поля волны, принято называть интенсивностью: I = A2.

Несложные тригонометрические преобразования приводят к следующему выражению для интенсивности результирующего колебания в точке P:

(*)

где Δ = r2 – r1 – так называемая разность хода.

Из этого выражения следует, что интерференционный максимум (светлая полоса) достигается в тех точках пространства, в которых Δ = mλ (m = 0, ±1, ±2, …). При этом Imax = (a1 + a2)2 > I1 + I2. Интерференционный минимум (темная полоса) достигается при Δ = mλ + λ / 2. Минимальное значение интенсивности Imin = (a1 – a2)2 

Источник: https://physics.ru/courses/op25part2/content/chapter3/section/paragraph7/theory.html

Vse-referaty
Добавить комментарий