Использование биомассы для получения энергии

Энергетическое использование биомассы. Биомасса как возобновляемый источник энергии

Использование биомассы для получения энергии

В последние годы в мире возникла большая заинтересованность в использовании биомассы для выработки тепловой и электрической энергии, ее вовлечение в топливно-энергетический баланс регионов и стран в целом.

Об этом говорят многочисленные исследования в странах Европейского союза и США, направленные на выявление оптимальных путей использования биомассы в энергетике, а также в России.

Интерес к широкому использованию биомассы определен следующими основными обстоятельствами:

  • Экологическими, связанными с необходимостью решения, в том числе, глобальных климатологических задач.
  • Необходимостью снижения потребления невозобновляемых источников энергии (газ, нефть, уголь), активно истощаемых в обозримом будущем, и заменой их возобновляемыми источниками.

Масштабное использование природных энергетических ресурсов для производства энергии на тепловых электрических станциях приводит к значительному загрязнению природной окружающей среды такими вредными выбросами в атмосферу, как диоксид углерода (СО2), оксиды серы (SO2 и др.), азота (NОх), а также твердой пыле-взвеси.

Обычный каменный уголь выделяет, например, около 3 т СО2 на каждую тонну сожженного топлива. В то же время такой выброс, как СО2, является основным компонентом парникового газа.

Несмотря на то, что климатологи мира не могут окончательно договориться о причинах глобального потепления (за 100 лет на 0,6°С, а по различным сценариям к концу столетия температура на планете может возрасти на 1,5…2 и даже 6°С) международными экологическими протоколами на уровне ООН для стран–производителей энергии устанавливаются ограниченные квоты на массовые выбросы СО2. Такие протоколы приняты в Монреале, Рио-де-Жанейро и Киото. Известно, что доля США, например, составляет 35% мировых выбросов углекислого газа, а в России – 17%.

Киотский протокол предусматривает добровольное обязательство стран с развитой экономикой с 2008 по 2012 годы увеличивать выбросы СО2 не более 5,2% по сравнению с уровнем 1990г.

Если страна-участница протокола сократит выбросы сверх утвержденной нормы, она может продать сэкономленные выбросы условного топлива «перебравшим» лимиты государствам. Те же государства, которые «выбросили» слишком много парниковых газов, должны будут либо купить квоты, либо заплатить штраф.

Санкции могут быть настолько большими (до 300…400 долларов за каждую лишнюю тонну углекислого газа), что странам-нарушителям придется или тратить огромные деньги на техническое перевооружение, или закрывать энергозатратные производства. По расчетным прогнозам цена квоты за тонну углекислого газа может составлять от 5 до 80 евро.

Энергетика в России эмитирует до 45% парниковых газов.

РАО «ЕЭС России» в 2001г. учредило для участия в разработке механизма переуступки квот на сэкономленные выбросы специальный некоммерческий Углеродный фонд России.

Фонд собирает заявки от Российских компаний для участия в тендерах на продажу сертифицированных квот на выбросы парниковых газов.

Рациональными путями снижения выбросов СО2, повышения экологической безопасности при производстве энергии являются:

  • повышение эффективности использования органического топлива;
  • активное внедрение энергосберегающих технологий;
  • использование биомассы как энергетического топлива.

При этом использование биомассы является одним из радикальных путей решения проблемы снижения выбросов парниковых газов (СО2) в топливоиспользующих установках, а также снижения выбросов других вредных ингредиентов:

  • деревья и растения, составляющие основной состав биомассы, сами поглощают выбросы СО2, т.е. в них происходит рециркуляция: сколько СО2 поглощено, столько и выделяется при сжигании и при этом не увеличивается его содержание в атмосфере;
  • в биомассе практически нет серы, малое содержание азота и золы.

Кроме того, эффективное использование биомассы как энергетического топлива снижает негативное ее влияние на окружающую среду от гниения, сжигания в случайных установках и условиях с целью очистки от них и др.

Используя механизмы финансирования, в соответствии с Киотским протоколом, например Санкт-Петербургский лесопромышленный концерн «Лемо», подготовил проект замены угольной ТЭС на энергоузел, работающий на биотопливе.

Энергоузел будет обслуживать комбинат по производству пиломатериалов на территории Сясьского ЦБК. Это предприятие будет использовать технологию полного цикла утилизации промышленных отходов в биологически чистое топливо для выработки электроэнергии.

Этот проект, как и три других проекта (перевод Амурской ТЭЦ «Хабаровскэнерго» с угля на газовое топливо; совершенствование системы централизованного теплоснабжения на Улан-Удэнской ТЭЦ-1; энергосберегающий проект Невинномысской ГРЭС), принят Углеродным фондом России (РАО «ЕЭС») для участия в тендерах на продажу сертифицированных квот на выбросы парниковых газов.

Другим стимулом использования биомассы в энергетике является вовлечение ее, как источника химической энергии, в топливно-энергетический баланс в качестве возобновляемого источника в структурно-энергетическом балансе (наряду с механической энергией гидро- и ветроэнергетики, тепловой энергией градиента температур и геотермальных установок).

Известно, что уже в обозримом будущем человечество может начать испытывать дефицит в природных энергетических ресурсах.

С учетом темпов их наращивания, обеспеченность в мире запасами органических топлив при существующих темпах ежегодного спроса на электроэнергию в цивилизованных странах 2,5…3% в год составляет (по разным источникам): нефти 25–48 лет; газа 35–64 года; угля 228–330 лет (кстати, запасы урана также могут быть исчерпаны в 30–60 лет).

В то же время последними исследованиями установлено, что экономически оправданное использование биомассы, как энергетического топлива, позволяет покрыть 26% мировой энергетической потребности.

При этом, как показано, за счет использования биомассы в качестве возобновляемого источника энергии сохраняются природные ресурсы, в значительной степени решается проблема выбросов СО2, повышается экологическая безопасность за счет снижения вредных выбросов.

Между тем существуют факторы, препятствующие широкому внедрению биомасс:

  • недоступность определенной доли растительных ресурсов для рентабельного использования;
  • распределение некоторых видов биомасс относительно мелкими партиями, трудность их сбора (концентрации) и транспортировки;
  • сезонность рынка некоторых биомасс, особенно годичного цикла;
  • трудности длительного хранения биомасс;
  • сложившийся стереотип и отсутствие в нашей стране законодательного и экономического стимулирования.

Растительные биомассы считаются одним из наиболее «благородных» видов топлива и во многих странах рассматриваются, как перспективный источник энергии на ближайшее будущее.

Ежегодный воспроизводимый потенциал биомасс оценивается в 10 раз выше мировой добычи полезных ископаемых. При этом, однако, необходимо учитывать, что доступность и экономическая целесообразность использования разных видов биомасс различна.

И все же, в конечном счете, при любом способе энергетического использования биомасс как возобновляемых источников энергии:

  • сохраняются природные ресурсы;
  • кардинально решается проблема выбросов парникового газа СО2;
  • уменьшается загрязнение атмосферы выбросами SO2, NОх, золы;
  • снижается стоимость вырабатываемой энергии.

Все это делает весьма перспективной проблему использования биомасс в энергетике.

Однако следует учитыват, что ряд их характеристик имеют уникальные особенности и кардинально отличаются от освоенных и используемых в энергетике углей. Это обстоятельство ограничивает и затрудняет их использование и требует разработки и внедрения нового оборудования и модернизации существующего.

Указанным обстоятельствам по внедрению и оптимизации способов использования биомассы как возобновляемого источника энергии в крупной энергетике в последнее время стали активно уделять внимание во многих странах мира.

Об этом говорят многочисленные публикации в разных изданиях. К сожалению, в России этим вопросам уделено пока недостаточно внимания.

Однако в малой (промышленной) энергетике и в России выполнен большой комплекс исследований и разработок по использованию биомасс различного происхождения.

При этом следует иметь в виду, что по запасам биомассы Россия занимает первое место в мире, а лесные запасы уже сами по себе оказывают благотворный экологический эффект на климат всей планеты.

Особой актуальностью этой проблемы обеспокоено Европейское сообщество, которое даже вступление России во Всемирную торговую организацию (ВТО) обусловило необходимостью ратификации Россией Киотского протокола (и принятие в соответствии с ним обязательств по снижению вредных выбросов).

Хотя обеспокоенности по отношению к запасам угля не существует (по сравнению с ограниченными запасами нефти и газа, которые не смогут быть использованы как энергетическое топливо в ближайшем будущем, запасов угля может хватить на многие сотни лет), однако его использование в энергетике (объемы использования постоянно растут) создает проблему совместимости существующих технологий его сжигания и окружающей среды.

Сжигание угля вызывает значительные выбросы в атмосферу таких вредных веществ, как SОx, NОx, золовые частицы, тяжелые металлы, а также увеличивает массовые выбросы относительно безвредного, но создающего парниковый эффект диоксида углерода (СО2).

Уже в течение многих лет общественность озабочена выбросами в атмосферу таких загрязнений, как SОx, NОx, золовые частицы и тяжелые металлы. В 2004г. разработаны нормы для регламентирования выбросов тяжелых металлов, что потребует новых затрат для их соблюдения.

При этом будет осуществлен переход на ограничение выбросов микрочастиц (2,5 микрона и менее), так как в них концентрируется содержание вредных тяжелых металлов (ртути и др). Эти нормы потребуют значительно более совершенных и дорогостоящих способов очистки газа.

Особое внимание в последнее десятилетие будет уделяться в дальнейшем и выбросам диоксида углерода (СО2) – конечного продукта сжигания ископаемого топлива. Это объясняется главным образом его влиянием на изменение климата. Вред природе наносят не сами выбросы СО2, а их накопление в атмосфере.

Проведенные измерения показали, что концентрация СО2 в атмосфере выросла с 280 ррm (в так называемый доиндустриальный период, середина XVIII в.) до 370 ррm в 2003г. Более половины выбросов СО2, образовавшихся при сжигании ископаемых топлив, не поглощается биосферой и поверхностью океана, а накапливается в атмосфере. Темп роста концентрации СО2 составляет 47 ррm/год.

В таком случае даже при умеренном росте мировой экономики (не превышающем 2 % в год) концентрация СО2 в атмосфере к 2050г. превысит 500 ррm. Для прекращения роста концентрации СО2 в атмосфере необходимо в ближайшие 10–20 лет снизить его выбросы до уровня в 3 раза ниже уровня выбросов 1990г.

Использование растительной биомассы выгодно отличается от углеводородного сырья своими экологическими достоинствами (малая зольность, практическое отсутствие серы и, безусловно, – снижение парникового эффекта) и позволяет в значительной мере решить эту климатологическую и экологическую проблему.

Далее следуют статьи по данной теме:



Источник: http://www.gigavat.com/netradicionnaya_energetika_biomassa_1.php

Использование биомассы для энергетических целей

Использование биомассы для получения энергии

Основу биомассы нашей планеты составляют органические соединения углерода, которым свойственно выделение тепла в процессе соединения с кислородом при сгорании.

Первоначальная энергия биомассы – кислород, образуется в процессе фотосинтеза под влиянием солнечных лучей.

В результате ряда химических или биохимических процессов биомасса может трансформироваться в газообразный метан, твердый древесный уголь или жидкий метанол.

Использование биологического топлива в промышленных объемах способно обезопасить мир от экологического загрязнения, делая возможным непрерывное получение энергии. Так, при сгорании биологического топлива большая часть энергии рассеивается, однако конечные продукты сгорания могут быть снова преобразованы в топливо путем естественных экологических процессов.

Скорость формирования биомассы на планете равна 250 ∙ 109 т/год, объемы же образуемых при этом органических соединений составляют 100 ∙ 109 т. Перспективы развития биоэнергетики огромны, учитывая, что лишь 0,5 % доступной на планете биомассы потребляется человеком в пищу.

Огромное значение сегодня имеет использование биотоплива в качестве аккумулятора энергии.

Фактически, биомасса способна обеспечить возможность производства всех видов топлива для промышленного и сельскохозяйственного применения, включая жидкое топливо для заправки транспорта.

Однако, промышленная переработка биомассы будет успешной и даст плоды если придерживаться нескольких основополагающих принципов:

1. Принципа экономической эффективности.

Некоторые виды биотоплива могут требовать для своего производства энергии больше, чем сами смогут в последующем дать, поэтому при организации процесса переработки биомассы важно брать во внимание фактор выгоды.

К примеру, этиловый спирт из соломы и растительного волокна обойдется в разы дешевле того же продукта из крахмала растений. Любая переработка сырья должна быть экономически оправдана.

2. Принципа соответствия планируемых объемов производства биотоплива концентрации возобновляемого сырья. Если оценка концентрации сыръя не будет предварительно сделана – существует вероятность того, что производство биотоплива окажется слишком дорогостоящим процессом.

3. Принципа предотвращения экологической опасности. Производство биотоплива не должно быть причиной эрозии почв, уничтожения лесов, сельскохозяйственных запасов растений, идущих в пищу.

Достоинства биоэнергетики

1. Широкая сфера применение биотоплива. Возможность развития биоэнергетики благодаря наличию огромных запасов биомассы, пригодной для переработки.

2. Стимулирование развития экотехнологий, сельскохозяйственной промышленности.

3. Возможность эффективного использования отходов, побочных продуктов, стоков.

4. Способствует улучшению окружающей среды посредством утилизации отходов.

5. Эффективная система переработки предотвращает загрязнение воды и воздуха.

6. Имеет большой потенциал в агропромышленных странах.

Недостатки биоэнергетики

1. Производство энергии может конкурировать с пищевой промышленностью – увеличение выпуска объемов биотоплива может оказать негативное влияние на рынок пищевых продуктов.

2. Обеднение и эрозия почв, как результат интенсивного выращивания растений для энергетических целей.

Энергетические процессы переработки биомассы

Термохимические

1. Прямое сжигание.

2. Пиролиз – нагрев биомассы в условиях отсутствия воздуха, или благодаря сгоранию некоторой её доли при ограничении доступа воздуха или кислорода. Состав продуктов пиролиза напрямую зависит от используемого в процессе сырья, температурных условий, способа организации процесса. Пиролиз, протекающий с образованием горючего газа, называется газификацией.

3. Иные термохимические процессы.

Биохимические

4. Спиртовая ферментация. Этиловый спирт – идеальный вариант топлива, способный заменить бензин. Вырабатывается он в процессе ферментации микроорганизмами. Преимущественно в спиртовой ферментации в качестве сырья используется сахар.

5. Анаэробная переработка. Получение биогаза (смеси CO2 и CH4 из биоотходов основано на свойстве последних разлагаться в анаэробных (бескислородных) условиях. Этот процесс проходит в три этапа, благодаря разложению органических веществ кислотными и метановыми микроорганизмами.

6. Биофотолиз. Фотолиз – распад воды до водорода и кислорода под воздействием света. Некоторые биоорганизмы могут в определенных условиях производить водород путем биофотолиза.

Агрохимические

7. Экстракция топлив. Некоторые разновидности топлив могут быть получены из сока растений, который собирают делая надрезы на коре или стебле живых растений, либо выдавливая под прессом из только что срезанных побегов.

Развитие биоэнергетики невозможно без соответствующей оценки биотопливного потенциала сельскохозяйственных культур, учета теплоты их сгорания и урожайности. Так, одни виды сельскохозяйственных культур могут давать урожаи несколько раз за сезон, другие – лиш раз в несколько лет.

Особое значение в биоэнергетике имеет возможность получение топлива благодаря продуктам жизнедеятельности растений, урожай которых можно использовать для производства биотоплива с минимальной переработкой.

К ним можно отнести семена (подсолнечника), орехи (пальмовое масло), плоды (оливки), листья (эвкалипт), корни, стволы, сок растений (каучук).

Состав биомассы в значительной степени зависит от её происхождения, но, как правило, она содержит разного рода органические и неорганические соединения при довольно значительной составляющей части влаги.

Уровень содержания внутриклеточной и межклеточной воды в большинстве видов растений составляет 50% их массы, а у водорослей и того более – 90 %. Даже после завершения воздушной сушки содержание влаги в растениях остается не меньшим 10-20 %.

В процессе преобразования биомассы в углекислый газ и воду выделяется порядка 450 кДж энергии на моль углерода. Именно наличии значительного количества влаги часто стает причиной значительных потерь тепловой энергии (испарение воды требует 2,3 МДж/кг).

Влага снижает эффективность и экономичность использования растительного материала в качестве топлива.

Уровень содержания минеральных веществ в биомассе зависит не только от места произрастания растений, но уровня загрязненности почвы этих территорий. Кремниевые и иные нерастворимые в воде неорганические соединения являются причиной уменьшение теплосодержания биомассы, растворимые же ионизированные соединения наоборот являються катализаторами в процессах газификации и горения.

Хотелось бы обратить внимание читателя на то, что выход энергии, получаемой в результате сжигания растительного продукта, может часто оказываться меньшим, затрачиваемого на его производство. Иногда даже получается, что проведение подобных технологических процессом в конечном итоге оказывается полностью бесполезным с экономической точки зрения.

Однако стоит брать во внимание, что в большинстве случает подобный перерасход энергии связан с процессом машинной переработки растительного сырья, поэтому в значительной степени он может компенсироваться благодаря дополнительному подключению энергии, образуемой при утилизации производственных отходов (например, соломы, жмыхи сахарного тросика, коры деревьев).

Тепло сжигания биомассы используется не только для приготовления пищи, обогрева жилища, но производства электроэнергии. Наиболее выгодно использовать для производства электроэнергии высокотемпературное тепло.

Эффективность получения электрической энергии из биомассы довольно низка по причине преобразования в неё только доли тепла, однако довольно часто благодаря подаче электроэнергии такого рода в сеть удается добиться оптимизации производства тепла для промышленных нужд.

Источник: http://www.electra.com.ua/istochniki-elektoenergii/292-ispolzovanie-biomassy-dlya-energeticheskikh-tselej.html

Использование биомассы для получения энергии (стр. 1 из 2)

Использование биомассы для получения энергии

Человечество может получить достаточное количество электроэнергии, не вырабатывая ее на ГЭС, АЭС или ТЭС, работающих на угле, нефти, природном газе и горючих сланцах. Можно необходимую энергию получать, используя альтернативные источники энергии, например ветровые, приливные, геотермальные, солнечные и волновые электростанции или ТЭС, работающие на биомассе.

Под альтернативной энергией понимаются биогаз, биодизель и другие углеводороды, полученные в результате переработки биомассы. Ресурсы данных источников колоссальны, но ограниченны. Альтернативная энергетика удовлетворить потребность человечества может только при экономии энергии.

Например, в Индии правительство на федеральном и региональном уровнях выделяет значительные субсидии для реализации программ по установке усовершенствованных печей. К концу 2000 года в стране работало 32,6 миллиона таких печей.

Использование улучшенных печей спасло от уничтожения более 13 миллионов тонн древесины в год.

А если усовершенствовать печи по всему миру? Использование биомассы в энергетических целях дает большие перспективы: можно использовать отходы сельского хозяйства (получение биогаза в животноводстве, использование на ТЭС отходов растениеводства), а также получать топливо (выращивание энергетических лесов).

Что можно сделать из биомассы?

Биогаз. Всего в мире в настоящее время используется или разрабатывается около шестидесяти разновидностей технологий получения биогаза. Наиболее распространенный метод – анаэробное сбраживание в метатанках, или анаэробных колоннах.

Биомасса (экскременты сельскохозяйственных животных; солома и прочие отходы растениеводства) сбраживаются в результате жизнедеятельности метанобактерий, в результате чего образуются биогаз и побочные продукты (витамин В, удобрение).

Потенциал: Россия ежегодно накапливает до 300 миллионов тонн в сухом эквиваленте органических отходов.250 млн. т. в сельскохозяйственном производстве и 50 млн. т в виде бытового мусора. Эти отходы являются сырьем для производства биогаза. Потенциальный объем ежегодно получаемого биогаза может составить 90 млрд. м3.

Биодизельное топливо

Биодизель – это экологически чистое топливо для дизельных двигателей, получаемое путем химической обработки растительного масла или животных жиров, которое может служить добавкой к дизельному топливу или полностью заменять его.

Биодизель, как показали опыты, при попадании в воду не причиняет вреда растениям и животным.

Кроме того, он подвергается практически полному биологическому распаду: в почве или в воде микроорганизмы за 28 дней перерабатывают 99 процентов биодизеля, что позволяет говорить о минимизации загрязнения рек и озер.

Производство биодизеля позволяет ввести в оборот не используемые сельскохозяйственные земли, создать новые рабочие места в сельском хозяйстве, машиностроении, строительстве и т.д. Например, в России с 1995 по 2005 год посевные площади сократились на 25,06 миллиона гектаров.

Выращивание биомассы для синтеза топлива

Для создания плантаций энергетических лесов в умеренной климатической зоне наиболее перспективны разновидности быстрорастущих сортов тополя (волосистоплодного и канадского) и ивы (корзиночной и козьей), а в южной части страны – акации и эвкалипта.

Посадка энергетических плантаций ведется черенками или саженцами квадратно-гнездовым способом или в шахматном порядке с различной шириной междурядий (от 0,8 до 2 метров). Для тополя плотность посадок обычно составляет 3 5 тысяч экземпляров на 1 гектар, однако общих рекомендаций пока не выработано. Период ротации составляет 6 7 лет.

Уход за плантацией заключается в бороновании междурядий, внесении удобрений и орошении в засушливые периоды. Плантации могут быть монокультурными и комбинированными.

Последние заслуживают особого внимания, поскольку способствуют диверсификации посевов и посадок различных культур, что должно повысить устойчивость к заболеваниям и вредителям, тем самым снижая потребность в ядохимикатах. Кроме того, подобные плантации рациональнее используют поступающую солнечную энергию для формирования биомассы.

Принцип комбинированных посевов и посадок различных культур на одном участке хорошо известен в тропиках, где так называемые “огороды” дают урожаи различных культур на протяжении нескольких лет подряд без применения удобрений и ядохимикатов.

Различные варианты комбинированных посевов и посадок разнообразных культур, включая энергетические, уже испытаны в одном из графств Великобритании. В посадках используют тополь и ячмень в междурядьях, либо тополь, ясень, ольху с подсолнечником и люпином в междурядьях, или с горохом полевым, ячменем, клевером, зелеными культурами и т.д.

Пример комбинированного использования энергетических лесов известен в Греции, где на плантациях шелковицы выкармливают шелковичного червя. Зимой годовой прирост ветвей обрезают и используют как биомассу.

На европейской территории России, где до 80 процентов электроэнергии вырабатывается на ТЭЦ, многие из которых расположены в лесных районах, безусловно, имеются возможности для создания плантаций энергетических лесов либо частичного использования местных лесных ресурсов (отходы заготовки и переработки древесины).

Количество энергии, которое можно получить с энергетической плантации при урожайности 15 тонн сухой биомассы с гектара в год (теплотворная способность 15 МДж/кг), составляет 225 ГДж/га.

При КПД газотурбинной электростанции 40 процентов, один гектар энергетической плантации может обеспечить экологически чистым топливом производство 252 МВт-ч электроэнергии в год.

В настоящее время рассматриваются различные схемы использования энергетических лесов с короткими севооборотами (как правило, предлагаются севообороты с шестилетним циклом).

При этом энергоотдача (отношение количества энергии, которое получают от системы, к энергетическим затратам на ее создание и эксплуатацию, включая все косвенные расходы) таких энергетических плантаций колеблется между тремя и четырьмя, что оказывается вполне приемлемой величиной, если учесть, что энергоотдача для тепловых станций, работающих на угле, составляет четыре-пять единиц.

Растительное масло имеет большую теплотворную способность (38 МДж). Кроме того, растительное масло можно переработать на биодизель. А вот сколько масла можно получить с гектара пашни, засеянного масличными культурами?

Конечно, использование пищевых продуктов (в данном случае растительное масло) не является выходом из энергетической проблемы. Но данный ресурс рассматривать вполне целесообразно.

Метод прямой конверсии биомассы в топливо

Недавно Джоржем Хубером и двумя его студентами из университета штата Массачусетс был разработан метод прямой конверсии биомассы в топливо.

Они опубликовали в журнале ChemSusChem статью с описанием метода селективного каталитического пиролиза целлюлозы, результатом которого является образование ароматических соединений (нафталин, толуол, этилбензол и др.

), среди побочных продуктов – твердый углеродный материал, СО, СО2 и вода.

Реакцию проводили при 600 C на цеолитном катализаторе ZSM5. Процесс завершался всего за две минуты. Исходным реагентом служил очищенный порошок целлюлозы.

Представления о механизме процесса включают несколько элементарных реакций – разложение целлюлозы с образованием органических соединений, содержащих кислород, затем реакции этих соединений внутри пор катализатора, где происходит дегидрирование, декарбонилирование, олигомеризация и другие химические превращения.

Эксперты высоко оценили новую работу, хотя сами авторы признают, что это лишь первый шаг к эффективному преобразованию биомассы в моторное топливо. Первым делом предстоит изучить возможность использования сырой биомассы, а не порошка целлюлозы.

Далее, основными продуктами пиролиза являются ароматические соединения, а их, согласно требованиям правительственной организации США – Агентства по охране окружающей среды – не должно быть больше 25% в общей массе бензина.

Значит, придется ограничиться добавкой полученной ароматики к алканам, либо проводить дополнительную реакцию гидрирования.

Тем не менее, несмотря на все эти ограничения, процесс д-ра Хубера привлечет большое внимание коллег и даст толчок к дальнейшим исследованиям в области экологически чистой энергетики, не приводящей к росту содержания углекислого газа в атмосфере.

Выращивание и переработка водорослей

Специальное выращивание биомассы в виде микроскопических водорослей с последующим ее перебраживанием в спирт или метан позволяет создать искусственный аналог процесса образования органических топлив, превосходящий по скорости естественные процессы в миллионы раз. Соотношение между величиной первичной биологической продукции и веществом, захороненным и сохранившимся в морских осадках, составляет 1000:1.

Создание специальных условий может многократно ускорить образование топлива. КПД фотосинтеза благодаря оптимизации питания биогенными элементами, температуре и перемешиванию может быть увеличен от 1,1 до 10 процентов.

В процесс переработки биомассы в газ и нефть может быть включено все вещество, а не 0,001 его часть, как происходит в природе, то есть естественный процесс образования углеводородов может быть значительно интенсифицирован.

С этой точки зрения, большой интерес вызывает одноклеточная водоросль ботриококкус, содержание углеводородов в которой достигает 80 процентов от сухого веса.

Углеводороды локализуются в основном на наружной поверхности клеток, и, следовательно, их можно удалять простым механическим способом или, например, применяя центрифуги, причем клетки при этом не разрушаются и их можно возвращать обратно в культиватор.

Состав углеводородов, продуцируемых ботриококкусом, позволяет использовать их в качестве источника энергии или как сырье в нефтехимической промышленности (непосредственно или после неполного крекинга).

После гидрокрекинга на выходе получается 65 процентов газолина, 15 процентов авиационного топлива, 3 процента остаточных масел.

Источник: https://mirznanii.com/a/321507/ispolzovanie-biomassy-dlya-polucheniya-energii

Vse-referaty
Добавить комментарий