История развития ускорителей заряженных частиц

Реферат: История развития ускорителей заряженных частиц

История развития ускорителей заряженных частиц

Реферат на тему:

История развития ускорителей заряженных частиц

Выполнил студент

Жучков Д.В.

Введение

Ускорители заряженных частиц — устройства для получения заряженных частиц (электронов, протонов, атомных ядер, ионов) больших энергий. Ускорение производится с помощью электрического поля, способного изменять энергию частиц, обладающих электрическим зарядом.

Магнитное поле может лишь изменить направление движения заряженных частиц, не меняя величины их скорости, поэтому в ускорителях оно применяется для управления движением частиц (формой траектории). Обычно ускоряющее электрическое поле создаётся внешними устройствами (генераторами).

Но возможно ускорение с помощью полей, создаваемых другими заряженными частицами; такой метод ускорения называется коллективным.

Ускоритель заряженных частиц следует отличать от плазменных ускорителей, в которых происходит ускорение в среднем электрически нейтральных потоков заряженных частиц (плазмы).

Описание ускорителя заряженных частиц

Ускоритель заряженных частиц — один из основных инструментов современной физики. Ускорители являются источниками, как пучков первичных ускоренных заряженных частиц, так и пучков вторичных частиц (мезонов, нейтронов, фотонов и др.), получаемых при взаимодействии первичных ускоренных частиц с веществом.

Пучки частиц больших энергий используются для изучения природы и свойств элементарных частиц, в ядерной физике, в физике твёрдого тела. Всё большее применение они находят и при исследованиях в др. областях: в химии, биофизике, геофизике.

Расширяется значение ускорителя заряженных частиц различных диапазонов энергий в металлургии — для выявления дефектов деталей и конструкций (дефектоскопия), в деревообделочной промышленности — для быстрой высококачественной обработки изделий, в пищевой промышленности — для стерилизации продуктов, в медицине — для лучевой терапии, для «бескровной хирургии» и в ряде др. отраслей.

Стартовой точкой ускорителя является источник заряженных частиц. Например, источником электронов может служить любой нагретый кусок металла, из которого постоянно выскакивают электроны и тут же возвращаются обратно.

Если рядом поместить проволочную сетку и приложить к ней напряжение, эти электроны потянутся к ней и, пролетев насквозь, устремятся к экрану-аноду, образовав пучок частиц невысокой энергии.

Именно так работает «домашний ускоритель на 10 кэВ» — электронно-лучевая трубка в старых телевизорах.

10 кэВ — это очень небольшая энергия, для изучения ядерных явлений ее недостаточно. Поэтому эру ускорительной техники физики отсчитывают от начала 1930-х годов, когда появились сразу две схемы ускорения частиц до энергий около 1 МэВ.

В 1932 году Джон Дуглас Кокрофт и Эренст Уолтон в Кембридже сконструировали каскадный 800-киловольтный генератор постоянного напряжения, который открыл новую эру в экспериментальной ядерной физике.

Уже в первом своем эксперименте они направили пучок ускоренных протонов на мишень из лития-7 и наблюдали самую настоящую ядерную реакцию: ядро лития захватывало протон и затем разваливалось на две альфа-частицы.

Считается, что о машине для ускорения заряженных частиц первым задумался Резерфорд, высказавший эту идею в 1927 году на сессии Лондонского Королевского общества. Но у отца-основателя ядерной физики были предшественники.

В 1919 году 17-летний школьник из Осло Рольф Видероэ прочел в газете, что Резерфорд разбил на осколки ядра азота, бомбардируя их альфа-частицами, испускаемыми радиевым источником. Мальчик сообразил, что скорость частиц и, следовательно, сила удара увеличатся, если разогнать их в постоянном электрическом поле.

При этом Рольф достаточно разбирался в физике, чтобы понять, что этот путь не самый лучший, так как необходимую разность потенциалов в миллионы вольт получить чрезвычайно трудно. Рольф решил, что для разгона частиц стоит использовать следствия уравнений электродинамики, о которых он кое-что знал.

После окончания школы Видероэ поехал в Германию изучать электротехнику в политехническом университете в Карлсруэ, а через три года набросал в блокноте схему кольцевого ускорителя, разгоняющего электроны с помощью вихревого электрического поля, возникающего (в полном соответствии с уравнениями Максвелла!) при периодическом изменении магнитного потока.

Фактически это обыкновенный электрический трансформатор, в котором одна из катушек заменена вакуумной камерой. Видероэ определил параметры магнитных полей, необходимые для того, чтобы все электроны могли набирать скорость на одной и той же круговой орбите.

Это и был проект первого в мире ускорителя элементарных частиц, причем с точки зрения теории абсолютно безупречный. А до выступления Резерфорда оставалось еще четыре года…После защиты диплома Рольф вернулся на родину для прохождения военной службы, а затем опять поехал в Германию работать над диссертацией.

Будучи экспериментатором, он решил воплотить свою схему в железе. Видероэ предполагал построить установку, разгоняющую электроны до 6 МэВ, но тут его постигло разочарование — электроны не желали оставаться на стабильной орбите.

Для их фокусировки требовалось дипольное магнитное поле, но физики осознали это лишь десять лет спустя: в 1940 году профессор университета штата Иллинойс Дональд Керст построил первый действующий индукционный ускоритель электронов на 2,3 МэВ (сейчас такие машины называют бетатронами, в память о тех временах, когда электроны именовали бета-частицами; крупнейший в мире бетатрон на 300 МэВ, построенный тем же Керстом, был введен в действие в 1950 году).Поскольку кольцевой ускоритель не действовал, а сроки защиты приближались, Видероэ решил построить линейный ускоритель, схему которого в 1925 году придумал шведский физик Густав Изинг. Машина была недостаточно мощной и потому бесполезной для серьезных экспериментов, но она всё же ускоряла в бегущем электрическом поле ионы натрия до 50 КэВ. Поле было переменным по необходимости, его частота изменялась таким образом, чтобы оставаться в фазе с набирающими скорость частицами. В 1928 году Видероэ благополучно защитился и опубликовал свою работу.В 1943 году он — кажется, первым в мире — понял, что для повышения энергии соударения частиц их можно сталкивать лоб в лоб, предварительно собирая в тороидальных вакуумных камерах, помещенных в магнитное поле. Сегодня такие устройства называют накопительными кольцами, Видероэ же назвал их «ядерными мельницами». Он запатентовал свою конструкцию в Германии, но в условиях военного времени патент засекретили. Обе его идеи были осуществлены, но много позже и другими людьми. Первое в мире накопительное кольцо было построено в 1961 году в Итальянской национальной лаборатории в городе Фраскати под руководством Бруно Тушека, младшего коллеги Видероэ. А сам Видероэ после войны успешно трудился в фирме, которая изготовляла бетатроны, применявшиеся в онкологических больницах как мощные источники рентгеновского излучения. Пришло к нему и научное признание, хотя и с запозданием — он стал консультантом в ЦЕРНе и в немецкой лаборатории физики высоких энергий DESY. Но так уж сложилось, что широкой публике этот ученый известен гораздо меньше, чем прочие классики ускорительных технологий.

Линейные ускорители

Прибор Видероэ был чисто демонстрационным. Первый «рабочий» линейный ускоритель построили в 1932 году сотрудники Кавендишской лаборатории Джон Кокрофт и Эрнест Уолтон, спустя 19 лет удостоенные Нобелевской премии. Эта машина разгоняла протоны до энергии в 500 КэВ, что позволило взломать ядра лития: ядро лития захватывало протон и затем разваливалось на две альфа-частицы.

В 1930-е годы эта система (так называемый каскадный генератор) использовалась довольно широко, но лишь для получения энергий до 1 МэВ (в этом качестве ее используют и поныне). А вот схема Изинга обладает куда лучшими возможностями. По идее она очень проста.

Заряженная частица покидает источник и летит по вакуумной камере сквозь множество соосных полых металлических трубок, расположенных вдоль прямой линии. На эти трубки подается переменное электрическое поле, которое частица «ощущает», лишь когда пролетает через зазор (внутри трубок оно экранируется).

Таким образом, в трубках частицы летят по инерции — дрейфуют (поэтому трубки и называют дрейфовыми). Частота колебаний электрического потенциала подобрана так, чтобы при прохождении каждого зазора частица ускорялась, а не тормозилась.

Набрав расчетную энергию, частицы попадают на мишень (на практике их приходится дополнительно фокусировать, например, с помощью магнитных линз). Понятно, что параметры дрейфовых трубок определяются видом ускоряемых частиц.

Если это электроны, которые быстро набирают почти световую скорость, длина трубок может быть одинаковой. Тяжелые частицы, протоны и ионы, разгоняются постепенно, поэтому их надо прогонять через дрейфовые трубки возрастающей длины. Именно такую конструкцию и предложил Изинг.

Через двадцать лет ее переоткрыл американец Луис Альварес, и теперь схема носит его имя. В 1946 году Альварес и Вольфганг Панофски построили в Беркли первый в мире линейный ускоритель, который разгонял протоны до энергии в 32 МэВ, вполне достаточной для экспериментов в области ядерной физики.

Для создания ускоряющего поля они воспользовались деталями радиолокаторов, которых, конечно, не было во времена Изинга. Схема Альвареса хорошо работает для разгона протонов до 200 МэВ. Более высокие энергии получают с помощью волноводов с бегущей волной, которые используют и в электронных линейных ускорителях.

Протонная карусельРольф Видероэ косвенным образом приложил руку и к изобретению циклотрона. Как ни странно, стимулом для создания этой машины стала его статья о линейном ускорителе. Эта малоизвестная история хорошо иллюстрирует, сколь непростым путем развивается научное знание.

Прибор Видероэ (единственная дрейфовая трубка с парой ускоряющих зазоров по краям) полностью воплощал ключевую идею Изинга — частицы бОльшую часть пути проходят по инерции и только

на определенных участках резонансно разгоняются электрическим полем.

В 1929 году статья Видероэ попалась на глаза молодому профессору Калифорнийского университета Эрнесту Орландо Лоуренсу, который понял, что резонансное ускорение частиц не обязательно осуществлять на прямолинейной траектории.

Он взял металлический полый цилиндр примерно тех же пропорций, что и банка из-под шпрот, разрезал его вдоль оси и раздвинул половинки (их сейчас называют дуантами).

Эту разрезанную банку надо вложить между полюсами электромагнита, а в ее центре поместить источник не особенно быстрых заряженных частиц, подчиняющихся законам ньютоновской механики. В постоянном магнитном поле они станут закручиваться и двигаться по инерции по окружностям фиксированного радиуса (разумеется, в камере должен быть вакуум).

Такое устройство можно превратить в ускоритель. Для этого в зазоры между дуантами надо подать переменное электрическое поле, частота которого совпадает с частотой вращения частиц (последняя зависит от заряда, напряженности магнитного поля и массы частиц и не зависит от их скорости).

При надлежащем выборе его фазы оно будет резонансно разгонять частицы при проходе зазоров между дуантами — точно так же, как и в линейном ускорителе Изинга–Альвареса. Те будут уходить на всё большие и большие радиусы по раскручивающейся спирали, покуда не столкнутся со стенкой камеры или не будут выведены на мишень.

В 1930 году Лоуренс первым опубликовал схему циклического резонансного ускорителя в журнале Science. Годом позже он совместно с аспирантом Стэнли Ливингстоном собрал демонстрационную модель диаметром 11 см. В камеру подавали сильно разреженный водород, который внутри нее ионизировался электрическим полем.

Ионизированные молекулы водорода набирали в ускорителе до 80 КэВ. Весной 1932 года Лоуренс и Ливингстон построили 25-сантиметровый протонный ускоритель на 1,2 МэВ. Еще через год у них была машина, ускорявшая ядра дейтерия до 5 МэВ. С 1934 года такие установки начали эксплуатировать и в других лабораториях.

Сам Лоуренс поначалу называл свое изобретение протонной каруселью, но вскоре оно стало именоваться циклотроном.

Циклотрон кардинально изменил экспериментальную базу ядерной физики, и неудивительно, что в 1939 году труды Лоуренса были удостоены Нобелевской премии.

А после войны выяснилось, что одновременно с Лоуренсом или даже чуть раньше к такой же идее пришел венгерский физик Шандор Гаал.

В мае 1929 года он отправил рукопись, где был изложен принцип циклотрона, в немецкий журнал Zeitschrift für Physic, но редакторы не поняли, о чем идет речь, и отказались ее напечатать.

Синхронные ускорители

Лоуренс хотел построить протонный циклотрон на 100 МэВ, но вмешались законы физики. За порогом 20 МэВ протоны разгоняются столь сильно, что в действие вступают формулы специальной теории относительности. Когда масса частицы начинает расти, частота ее обращения, естественно, снижается, и частица выходит из резонанса.

Самые большие циклотроны, построенные в Окриджской национальной лаборатории в США и в Стокгольмском Нобелевском институте, могли разогнать протоны до 22 МэВ, а ядра дейтерия — до 24 МэВ. Для достижения больших энергий нужны циклические ускорители, которые могут обеспечить стабильное соответствие фазы ускоряющего поля движению частицы. Циклотрон на такое не способен.

Чтобы релятивистские частицы продолжали разгоняться в резонансном режиме, нужно либо постепенно увеличивать напряженность магнитного поля (тем самым уменьшая радиус их траектории), либо уменьшать частоту колебаний электрического потенциала на дуантах, заставляя ее следовать за снижением частоты обращения частиц, либо согласованно менять параметры обоих полей.

Будем, например, действовать с помощью одного электрического поля. Допустим, мы определили, как снижать его частоту. Оказывается, этого мало. Начальные скорости частиц не будут абсолютно одинаковыми; кроме того, во время откачки воздуха некоторая доля частиц столкнется с его молекулами и собьется с курса.

Ускоритель сможет работать, лишь если со временем число подобных отклонений будет сокращаться и частицы вернутся на правильные траектории. В противном случае все частицы быстро выйдут из резонанса.

И вот тут на помощь приходит эффект автофазировки, открытый независимо друг от друга советским ученым Владимиром Векслером при содействии Евгения Фейнберга и, немногим позже, американцем Эдвином Макмилланом.

Они доказали, что кольцевые резонансные ускорители могут выйти за циклотронный предел и разогнать частицы практически до любых энергий — с помощью особого режима колебаний электрического потенциала, который автоматически корректирует не особенно большие отклонения частиц от расчетной фазы (ее называют равновесной) и тем самым сохраняет резонансное ускорение.

Если бы не этот режим, возможности кольцевых ускорителей были бы ограничены максимумом циклотронных энергий (стоит заметить, что механизм автофазировки работает и в линейных резонансных ускорителях).После открытия автофазировки были созданы и воплощены в металле различные конструкции ускорителей.

Машину с постоянным магнитным полем и электрическим полем переменной частоты в англоязычной литературе принято называть синхроциклотроном, а в советской — фазотроном. В синхроциклотроне, как и в циклотроне, частицы движутся по раскручивающейся спирали. Ускорители, в которых рост энергии частиц сопровождается увеличением напряженности магнитного поля, называются синхротронами.

Синхротроны строят в виде кольцевых туннелей, окруженных электромагнитами, так что частицы там движутся по орбитам постоянного радиуса. У электронного синхротрона частота электрического поля неизменна (поскольку электроны там движутся почти со световой скоростью), а вот у протонного синхротрона этот показатель варьирует.

Эти ускорители в СССР, с подачи Векслера, назвали синхрофазотронами.Первую такую машину (Космотрон) с вакуумной камерой 23-метрового диаметра запустили в Брукхейвене в 1952 году. Поначалу она ускоряла протоны до 2,3 ГэВ, а после полной доводки — до 3,3 ГэВ. В 1953 году в Бирмингемском университете вступил в действие менее продвинутый протонный синхротрон на 1 ГэВ.В последующие годы их энергия выросла до нескольких ГэВ и на них были совершены многие открытия в физике элементарных частиц. В 1954 году заработал ускоритель в Беркли, который годом позже вышел на энергию 6,2 ГэВ (именно на нем впервые получили антипротоны). В 1957 году был запущен синхрофазотрон в Дубне на 10 ГэВ. Все самые большие циклические протонные ускорители — синхрофазотроны.

В основе многих современных ускорителей, в частности LHC, лежит принцип синхрофазотрона.

Фокусы фокусировки

Через несколько лет после прозрений Векслера и Макмиллана физики осуществили новый прорыв на пути к более высоким энергиям.Во всех резонансных циклических ускорителях магнитное поле не только заворачивает частицы, но также их и фокусирует.

В Космотроне и других синхротронах первого поколения частицы путешествовали в магнитном поле, которое постепенно спадает при увеличении радиуса. Его силовые линии имеют бочкообразую форму, благодарю чему частицы фокусируются не только по радиусу, но и по вертикали; иначе говоря, такое поле не дает частицам уходить с плоскости орбиты.

Подобная конфигурация магнитного поля отнюдь не идеальна. Она позволяет получать лишь довольно широкие пучки (а для обстрела мишеней лучше бы сжимать пучки сильнее, увеличивая их плотность) и к тому же требует строительства очень больших и потому дорогих машин. Масса магнитной системы дубнинского синхрофазотрона, где реализована такая фокусировка, равна 36 000 тонн.

Расходы на системы с существенно большей массой зашкаливали бы за все разумные пределы.Эта проблема была решена в середине прошлого века.

В 1949 году греческий физик Николас Христофилос показал, что движением частиц можно управлять с помощью большого числа прилегающих друг к другу электромагнитов, чередующих сильное спадание магнитного поля по радиусу вакуумной камеры со столь же сильным его нарастанием.

Однако он изложил свои результаты лишь в форме патентной заявки, так что его открытие тогда осталось незамеченным. Три года спустя к той же идее пришли американцы Эрнест Курант, Стэнли Ливингстон и Хартланд Снайдер. Этот метод получил название сильной фокусировки (фокусировка посредством радиально спадающего поля называется слабой). Он ужесточил требования к регулированию ускоряющего электрического поля, но зато позволил лучше фокусировать пучки по радиусу и вертикали и замедлил рост размеров ускорителей.

Коллайдеры

Следующим этапом в истории ускорительной техники стало созданиеколлайдеров — ускорителей со встречными пучками, где два пучка частиц раскручиваются в противоположных направлениях и сталкиваются друг с другом.

Изначально эту идею высказал и даже запатентовал в 1943 году норвежский физик Рольф Видероэ (Rolf Wideröe), однако реализована она была лишь в начале 1960-х годов тремя независимыми командами исследователей: итальянской группой под руководством австрийца Бруно Тушека (Bruno Touschek), американцами под руководством Джерарда О’Нейлла (Gerard K. O'Neill) и Вольфганга Пановски (Wolfgang K.H. Panofsky) и новосибирской группой, возглавляемой Г.И. Будкером.

До того момента все эксперименты проводились с неподвижной мишенью. Когда высокоэнергетическая частица налетает на неподвижную частицу, рожденные продукты столкновения летят вперед с большой скоростью, и именно на их кинетическую энергию тратится основная доля энергии пучков.

Если же сталкиваются летящие навстречу друг другу одинаковые частицы, то большая часть их энергии расходуется по прямому назначению: на рождение частиц.

По формулам релятивистской механики можно вычислить полную энергию в системе центра масс — именно эту часть энергии исходных частиц можно потратить на рождениеновых частиц. В первом случае это примерно, а во втором случае 2E.

Если частицы ультрарелятивистские, E >> mc2, то в коллайдерах на встречных пучках могут рождаться гораздо более тяжелые частицы, чем в экспериментах с неподвижной мишенью при той же энергии пучка.

Схема расположения Большого адронного коллайдера

В 2008 году в строй вступает самый мощный ускоритель, когда-либо построенный человеком, — Большой адронный коллайдер, LHC, с энергией протонов 7 ТэВ. Он находится в подземном кольцевом туннеле длиной 27 км на границе Швейцарии и Франции. Физики надеются, что результаты LHC приведут к новому прорыву в понимании глубинного устройства нашего мира.

Сейчас ускорители подошли к своему конструкционному пределу. Существенное увеличение энергии частиц станет возможным, только если коллайдеры станут линейными и будет реализована более эффективная методика ускорения частиц.

Прорыв обещает лазерная или лазерно-плазменная методика ускорения.

В ней короткий, но мощный лазерный импульс либо непосредственно разгоняет заряженные частицы, либо создает возмущение в облаке плазмы, которое подхватывает пролетающий сгусток электронов и резко его ускоряет.

Для успешного применения этой схемы в ускорителе потребуется преодолеть еще немало трудностей (научиться состыковывать друг с другом несколько ускоряющих элементов, справиться с большим угловым расхождением, а также разбросом по энергии ускоренных частиц), но первые результаты очень обнадеживают.

Источник: http://www.yurii.ru/ref10/particle-193592.php

Ускоритель заряженных частиц. История изобретения и производства

История развития ускорителей заряженных частиц

Ускоритель заряженных частиц

Справочник / История техники, технологии, предметов вокруг нас

  к статье

У современной физики есть испытанное средство проникать в тайны атомного ядра – обстрелять его частицами или облучить и посмотреть, что с ним произойдет. Для самых первых исследований атома и его ядра хватало энергии излучений, возникающих при естественном распаде радиоактивных элементов. Но вскоре этой энергии оказалось недостаточно, и, чтобы еще глубже “заглянуть” в ядро, физикам пришлось задуматься над тем, как искусственно создать поток частиц высоких энергий.Известно, что, попав между электродами с разным зарядом, заряженная частица, например, электрон или протон, ускоряет движение под действием электрических сил. Это явление и породило в 1930-е годы идею создания так называемого линейного ускорителя.По конструкции линейный ускоритель представляет собой длинную прямую трубку-камеру, внутри которой поддерживается вакуум. По всей длине камеры расставлено большое количество металлических трубок-электродов. От специального генератора высокой частоты на электроды подают переменное электрическое напряжение – так, что, когда первый электрод оказывается заряженным, допустим положительно, второй электрод будет заряжен отрицательно. Дальше снова положительный электрод, за ним – отрицательный. Схема ускорителя Видероэ с пролетными трубками: 1 – пролетные трубки; 2 – источник переменного напряжения; 3 – область действия электрического поля Е.Пучок электронов выстреливается из электронной “пушки” в камеру и под действием потенциала первого, положительного электрода начинает ускоряться, проскакивая сквозь него дальше. В этот же момент фаза питающего напряжения меняется, и электрод, только что заряженный положительно, становится отрицательным. Теперь уже он отталкивает от себя электроны, как бы подгоняя их сзади. А второй электрод, став за это время положительным, притягивает электроны к себе, еще более ускоряя их. Потом, когда электроны пролетят через него, он снова станет отрицательным и подтолкнет их к третьему электроду.Так по мере движения вперед электроны постепенно разгоняются, достигая к концу камеры околосветовой скорости и приобретая энергию в сотни миллионов электрон-вольт. Через установленное в конце трубы окошко, непроницаемое для воздуха, порция ускоренных электронов обрушивается на изучаемые объекты микромира – атомы и их ядра.Нетрудно понять, что чем больше энергия, которую мы хотим сообщить частицам, тем длиннее должна быть труба линейного ускорителя – десятки, а то и сотни метров. Но не всегда это возможно. Вот если бы свернуть трубу в компактную спираль. Тогда такой ускоритель свободно мог бы разместиться в лаборатории.Воплотить эту идею в жизнь помогло еще одно физическое явление. Заряженная частица, попав в магнитное поле, начинает двигаться не по прямой, а “завивается” вокруг магнитных силовых линий. Так появился еще один тип ускорителя – циклотрон. Первым циклотрон был построен еще в 1930 году Э. Лоуренсом в США. ЦиклотронОсновная часть циклотрона – мощный электромагнит, между полюсами которого помещена плоская цилиндрическая камера. Она состоит из двух полукруглых металлических коробок, разделенных небольшим зазором. Эти коробки – дуанты – служат электродами и соединены с полюсами генератора переменного напряжения. В центре камеры находится источник заряженных частиц – что-то вроде электронной “пушки”. Схема циклотронаВылетев из источника, частица (предположим, что теперь это положительно заряженный протон) сразу же притягивается к электроду, заряженному в данный момент отрицательно. Внутри электрода электрическое поле отсутствует, поэтому частица летит в нем по инерции. Под влиянием магнитного поля, силовые линии которого перпендикулярны плоскости траектории, частица описывает полуокружность и подлетает к зазору между электродами. За это время первый электрод становится положительным и теперь выталкивает частицу, в то время как другой втягивает ее в себя. Так, переходя из одного дуанта в другой, частица набирает скорость и описывает раскручивающуюся спираль. Из камеры частицы выводятся с помощью специальных магнитов на мишени экспериментаторов.Чем ближе скорость частиц в циклотроне подходит к скорости света, тем они становятся тяжелее и начинают постепенно отставать от меняющего свой знак электрического напряжения на дуантах. Они уже не попадают в такт электрическим силам и перестают ускоряться. Предельная энергия, которую удается сообщить частицам в циклотроне, составляет 25-30 МэВ.Чтобы преодолеть этот барьер, частоту электрического напряжения, поочередно подаваемого на дуанты, постепенно уменьшают, подстраивая ее в такт “отяжелевшим” частицам. Ускоритель такого типа называется синхроциклотроном.На одном из крупнейших синхроциклотронов в Объединенном институте ядерных исследований в Дубне (под Москвой) получают протоны с энергией 680 МэВ и дейтроны (ядра тяжелого водорода – дейтерия) с энергией 380 МэВ. Для этого потребовалось соорудить вакуумную камеру диаметром 3 метра и электромагнит массой 7000 тонн!По мере того как физики все глубже проникали в структуру ядра, требовались частицы все более высоких энергий. Возникла необходимость строить еще более мощные ускорители – синхротроны и синхрофазотроны, в которых частицы движутся не по спирали, а по замкнутой окружности в кольцевой камере. В 1944 году независимо друг от друга советский физик В.И. Векслер и американский физик Э.М. Макмиллан открыли принцип автофазировки. Суть метода заключается в следующем: если определенным образом подобрать поля, частицы будут все время автоматически попадать в фазу с ускоряющим напряжением. В 1952 году американские ученые Э. Курант, М. Ливингстон и Х. Снайдер предложили так называемую жесткую фокусировку, которая прижимает частицы к оси движения. С помощью этих открытий удалось создать синхрофазотроны на сколь угодно высокие энергии.Существует и другая система классификации ускорителей – по типу ускоряющего электрического поля. Высоковольтные ускорители работают за счет высокой разности потенциалов между электродами ускоряющего пространства, которое действует все время, пока частицы пролетают между электродами. В индукционных ускорителях “работает” вихревое электрическое поле, индуцируемое (возбуждаемое) в месте, где в данный момент находятся частицы. И, наконец, в резонансных ускорителях используют изменяемое по времени и по величине электрическое ускоряющее поле, синхронно с которым, “в резонанс”, происходит ускорение всего “комплекта” частиц. Когда говорят о современных ускорителях частиц на высокие энергии, имеют в виду в основном кольцевые резонансные ускорители.В еще одном виде ускорителей – протонном – на очень высокие энергии к концу периода ускорения скорость частиц приближается к скорости света. Они обращаются по круговой орбите с постоянной частотой. Ускорители для протонов высоких энергий называют протонными синхротронами. Три самых крупных расположены в США, Швейцарии и России.Энергия ныне действующих ускорителей достигает десятков и сотен гигаэлектронвольт (1 ГэВ = 1000 МэВ). Один из самых крупных в мире – протонный синхрофазотрон У-70 Института физики высоких энергий в городе Протвино под Москвой, вступивший в строй в 1967 году. Диаметр ускорительного кольца составляет полтора километра, общая масса 120 магнитных секций достигает 20000 тонн. Каждые две секунды ускоритель выстреливает по мишеням залпом из 10 в двенадцатой степени протонов с энергией 76 ГэВ (четвертый показатель в мире). Чтобы достигнуть такой энергии, частицы должны совершить 400000 оборотов, преодолев расстояние в 60000 километров! Здесь же сооружен подземный кольцевой тоннель длиной двадцать один километр для нового ускорителя.Интересно, что пуски ускорителей в Дубне или Протвино в советские времена проводились только по ночам, поскольку на них подавалась чуть ли не вся электроэнергия не только Московской, но и соседних областей!В 1973 году американские физики привели в действие в городе Батавии ускоритель, в котором частицам удавалось сообщить энергию в 400 ГэВ, а потом довели ее до 500 ГэВ. Сегодня самый мощный ускоритель находится в США. Он называется “Тэватрон”, поскольку в его кольце длиной более шести километров с помощью сверхпроводящих магнитов протоны приобретают энергию около 1 тераэлектронвольт (1 ТэВ равен 1000 ГэВ). Вид на ускорительный центр Fermilab, США. Теватрон (кольцо на заднем плане) и кольцо-инжекторЧтобы достичь еще более высокой энергии взаимодействия пучка ускоренных частиц с материалом исследуемого физического объекта, надо разогнать “мишень” навстречу “снаряду”. Для этого организуют столкновение пучков частиц, летящих навстречу друг другу в особых ускорителях – коллайдерах. Конечно, плотность частиц во встречных пучках не столь велика, как в материале неподвижной “мишени”, поэтому для ее увеличения применяют так называемые накопители. Это кольцевые вакуумные камеры, в которые “порциями” вбрасывают частицы из ускорителя. Накопители снабжены ускоряющими системами, компенсирующими частицам потерю энергии. Именно с коллайдерами ученые связывают дальнейшее развитие ускорителей. Их сооружено пока считанные единицы, и находятся они в самых развитых странах мира – в США, Японии, ФРГ, а также в Европейском центре ядерных исследований, базирующемся в Швейцарии.Современный ускоритель – это “фабрика” по производству интенсивных пучков частиц – электронов или в 2000 раз более тяжелых протонов. Пучок частиц из ускорителя направляется на подобранную, исходя из задач эксперимента, “мишень”. При соударении с ней возникает множество разнообразных вторичных частиц. Рождение новых частиц и есть цель опытов.С помощью специальных устройств – детекторов – эти частицы либо их следы регистрируют, восстанавливают траекторию движения, определяют массу частиц, электрический заряд, скорость и другие характеристики. Затем путем сложной математической обработки информации, полученной с детекторов, на компьютерах восстанавливают всю “историю” взаимодействия и, сопоставив результаты измерений с теоретической моделью, делают выводы: совпадают реальные процессы с построенной моделью или нет. Именно так добывается новое знание о свойствах внутриядерных частиц.Чем выше энергия, которую приобрела частица в ускорителе, тем сильнее она воздействует на атом “мишени” или на встречную частицу в коллайдере, тем мельче будут “осколки”.С помощью коллайдера в США, например, проводятся эксперименты с целью воссоздания в лабораторных условиях Большого взрыва, с которого, как предполагается, началась наша Вселенная. В этом смелом эксперименте принимали участие физики из двадцати стран, среди которых были и представители России. Российская группа летом 2000 года непосредственно участвовала в эксперименте, дежурила на ускорителе, снимала данные.Вот что говорит один их российский ученых – участников этого эксперимента – кандидат физико-математических наук, доцент МИФИ Валерий Михайлович Емельянов: “В 60 милях от Нью-Йорка, на острове Лонг-Айленд, был построен ускоритель RHIC – Relativistic Heavy Ion Collider – коллайдер на тяжелых релятивистских ионах. “Тяжелых” – поскольку уже в этом году он начал работать с пучками ядер атомов золота. “Релятивистских” – тоже понятно, речь идет о скоростях, при которых во всей красе проявляются эффекты специальной теории относительности. А “коллайдером” (от collide – сталкиваться) он называется потому, что в его кольце происходит столкновение встречных пучков ядер. Кстати, в нашей стране ускорителей такого типа нет. Энергия, которая приходится на один нуклон, составляет 100 ГэВ. Это очень много – почти вдвое больше ранее достигнутого. Первое физическое столкновение было зафиксировано 25 июня 2000 года”. Задачей ученых было попытаться зарегистрировать новое состояние ядерного вещества – кварк-глюонную плазму.”Задача очень сложна, – продолжает Емельянов, – а математически – вообще некорректна: одно и то же фиксируемое распределение вторичных частиц по импульсам и скоростям может иметь совершенно разные причины. И только при детальном эксперименте, в котором задействована масса детекторов, калориметры, датчики множественности заряженных частиц, счетчики, регистрирующие переходное излучение, и т п., есть надежда зарегистрировать тончайшие отличия, присущие именно кварк-глюонной плазме. Механизм взаимодействия ядер при столь больших энергиях интересен сам по себе, но куда важнее, что впервые в лабораторных условиях мы можем исследовать зарождение нашей Вселенной”.

Мусский С.А.

Смотрите другие статьи раздела История техники, технологии, предметов вокруг нас.

Читайте и пишите полезные комментарии к этой статье.

Источник: http://www.diagram.com.ua/info/engineering-and-technology/engineering-and-technology015.shtml

История ускорителей

История развития ускорителей заряженных частиц

Простейший ускоритель состоит из… одного-единственного кристалла, обладающего пироэлектрическими свойствами, то есть способного электризоваться при нагреве. В некоторых кристаллах, например LiTaO3, удается достичь разности потенциалов до ста тысяч вольт.

Находящиеся поблизости свободные электроны и ионы под действием электрического поля разгоняются до энергий порядка 100 кэВ — этого уже достаточно для изучения некоторых ядерных процессов.

Например, в 2005 году исследовательская группа из Калифорнийского университета в Лос-Анджелесе сумела запустить на этом природном мини-ускорителе реакцию термоядерного синтеза. Правда, для энергетики эта схема не представляет интереса из-за чрезвычайно низкого КПД.

Пироэлектрические кристаллы — скорее курьез, но этот пример иллюстрируют главную идею, лежащую в основе всех ускорителей: заряженные частицы ускоряются электрическим полем. И потому современные ускорители — это в первую очередь результат развития электротехники в сочетании, конечно, с достижениями других разделов физики, применяемых для решения возникающих проблем.

Стартовой точкой ускорителя является источник заряженных частиц. Например, источником электронов может служить любой нагретый кусок металла, из которого постоянно выскакивают электроны и тут же возвращаются обратно.

Если рядом поместить проволочную сетку и приложить к ней напряжение, эти электроны потянутся к ней и, пролетев насквозь, устремятся к экрану-аноду, образовав пучок частиц невысокой энергии.

Именно так работает «домашний ускоритель на 10 кэВ» — электронно-лучевая трубка в старых телевизорах.

10 кэВ — это очень небольшая энергия, для изучения ядерных явлений ее недостаточно Как выграть в казино в игровые автоматы: Открывайте уникальный мир www.ru-vulkan.ru и обогащайтесь! . Поэтому эру ускорительной техники физики отсчитывают от начала 1930-х годов, когда появились сразу две схемы ускорения частиц до энергий около 1 МэВ.

В 1932 году Джон Дуглас Кокрофт и Эренст Уолтон в Кембридже сконструировали каскадный 800-киловольтный генератор постоянного напряжения, который открыл новую эру в экспериментальной ядерной физике.

Уже в первом своем эксперименте они направили пучок ускоренных протонов на мишень из лития-7 и наблюдали самую настоящую ядерную реакцию: ядро лития захватывало протон и затем разваливалось на две альфа-частицы.

Создать разность потенциалов в десятки мегавольт очень непросто, но быстро выяснилось, что это и не обязательно. Вместо этого можно свернуть ускоритель в кольцо, поместив его в магнитное поле.

В отличие от электрического, магнитное поле не ускоряет частицы, а лишь искривляет их траекторию. В частности, в однородном магнитном поле траектория заряженной частицы замыкается в окружность.

Если теперь частицу время от времени подталкивать вперед электрическим полем, она будет набирать энергию, постепенно увеличивая радиус траектории.

При этом автоматически решаются две задачи: частицы можно удерживать на орбите столько времени, сколько нужно, а ускоряющее электрическое поле не обязательно должно быть большим (тысяча проходов через разность потенциалов в один киловольт эквивалентна мегавольтному линейному генератору).

Ускоритель частиц на основе этого принципа — циклотрон — был задуман Эрнестом Лоуренсом в 1928 году, хотя идеи о «протонной карусели» в магнитном поле ранее высказывались норвежцем Рольфом Видероэ (Rolf Wideroe) Казино вулкан мобильная версия – идеальная и новая жизнь.

Стать миллиардером – просто! . Циклотрон состоит из двух полых половинок диска, дуантов, внутри которых вращаются частицы. На края зазора подается переменное напряжение, частота которого точно совпадает с частотой обращения частиц.

Когда частицы пролетают сквозь зазор в одну сторону, электрическое поле подталкивает вперед, а через полпериода, когда они вновь пересекают зазор в обратном направлении, поле уже успевает сменить знак и снова их подталкивает, а не тормозит.

Так повторяется круг за кругом, пока не будет достигнута максимальная энергия.

Принципиально важно, что пока скорость электронов существенно меньше скорости света, частота их обращения остается постоянной: рост скорости в точности компенсируется увеличением радиуса орбиты. Благодаря этому частица всегда подлетает к зазору через одинаковые интервалы времени.

Первый построенный Лоуренсом циклотрон имел чуть больше 10 см в диаметре и разгонял частицы до 80 кэВ.

Быстрый прогресс привел к появлению циклотрона на 8 МэВ в 1936 году и к 200-мэвному многометровому гиганту в 1946 году, но дальнейший рост размеров оказался сопряжен со слишком большими техническими сложностями (необходимо обеспечить однородное магнитное поле, глубокий вакуум и механическую прочность, не мешая при этом пучку раскручиваться по спирали). Чтобы избавиться от этих проблем вместо огромного диска частицы стали запускать в длинную свернутую в кольцо трубу, а для удержания их на постоянной орбите синхронно с ростом энергии увеличивали магнитное поле. Ускоритель такого типа получил название синхротрон. В основе многих современных ускорителей, в частности в основе LHC, лежит принцип синхротрона.

Следующим этапом в истории ускорительной техники стало создание коллайдеров — ускорителей со встречными пучками.

Изначально эту идею высказал и даже запатентовал в 1943 году Рольф Видероэ, однако реализована она была лишь в начале 1960-х годов тремя независимыми командами исследователей: итальянской группой под руководством Бруно Тушека, американцами из Принстона и Стэнфорда и новосибирской группой, возглавляемой Г.И. Будкером.

До того момента все эксперименты проводились с неподвижной мишенью. Когда высокоэнергетическая частица налетает на неподвижную мишень, рожденные продукты столкновения летят вперед с большой скоростью, и именно на их кинетическую энергию тратится основная доля энергии пучков.

Если же сталкиваются летящие навстречу друг другу одинаковые частицы, то большая часть их энергии расходуется по прямому назначению: на рождение частиц.

Поэтому в коллайдерах могут возникать намного более тяжелые частицы, чем в экспериментах с неподвижной мишенью при той же энергии пучка.

Чтобы релятивистские частицы продолжали разгоняться в резонансном режиме, нужно либо постепенно увеличивать напряженность магнитного поля (тем самым уменьшая радиус их траектории), либо уменьшать частоту колебаний электрического потенциала на дуантах, заставляя ее следовать за снижением частоты обращения частиц, либо согласованно менять параметры обоих полей.

Будем, например, действовать с помощью одного электрического поля. Допустим, мы определили, как снижать его частоту. Оказывается, этого мало.

Начальные скорости частиц не будут абсолютно одинаковыми; кроме того, во время откачки воздуха некоторая доля частиц столкнется с его молекулами и собьется с курса.

Ускоритель сможет работать, лишь если со временем число подобных отклонений будет сокращаться и частицы вернутся на правильные траектории. В противном случае все частицы быстро выйдут из резонанса.

И вот тут на помощь приходит эффект автофазировки, открытый независимо друг от друга советским ученым Владимиром Векслером при содействии Евгения Фейнберга и, немногим позже, американцем Эдвином Макмилланом.

Они доказали, что кольцевые резонансные ускорители могут выйти за циклотронный предел и разогнать частицы практически до любых энергий — с помощью особого режима колебаний электрического потенциала, который автоматически корректирует не особенно большие отклонения частиц от расчетной фазы (ее называют равновесной) и тем самым сохраняет резонансное ускорение.

Если бы не этот режим, возможности кольцевых ускорителей были бы ограничены максимумом циклотронных энергий (стоит заметить, что механизм автофазировки работает и в линейных резонансных ускорителях).

После открытия автофазировки были созданы и воплощены в металле различные конструкции ускорителей. Машину с постоянным магнитным полем и электрическим полем переменной частоты в англоязычной литературе принято называть синхроциклотроном, а в советской — фазотроном.

В синхроциклотроне, как и в циклотроне, частицы движутся по раскручивающейся спирали. Ускорители, в которых рост энергии частиц сопровождается увеличением напряженности магнитного поля, называются синхротронами.

Синхротроны строят в виде кольцевых туннелей, окруженных электромагнитами, так что частицы там движутся по орбитам постоянного радиуса.

У электронного синхротрона частота электрического поля неизменна (поскольку электроны там движутся почти со световой скоростью), а вот у протонного синхротрона этот показатель варьирует. Эти ускорители в СССР, с подачи Векслера, назвали синхрофазотронами.

Первую такую машину (Космотрон) с вакуумной камерой 23-метрового диаметра запустили в Брукхейвене в 1952 году. Поначалу она ускоряла протоны до 2,3 ГэВ, а после полной доводки — до 3,3 ГэВ.

В 1953 году в Бирмингемском университете вступил в действие менее продвинутый протонный синхротрон на 1 ГэВ. В 1954 году заработал ускоритель в Беркли, который годом позже вышел на энергию 6,2 ГэВ (именно на нем впервые получили антипротоны).

В 1957 году был запущен синхрофазотрон в Дубне на 10 ГэВ. Все самые большие циклические протонные ускорители — синхрофазотроны.

Интересная статья? Поделись ей с другими:

Комментировать материалы сайта могут только зарегистрированные пользователи. Зарегистрируйтесь пожалуйста для полноценной роботы с сайтом.
Спасибо!

Источник: http://quantum-tech.ru/lhc/uskoritelhistory.html

Ускорители заряженных частиц. Циклотрон

История развития ускорителей заряженных частиц

Для исследования структуры атомных ядер их бомбардируют частицами, имеющими большую энергию, то есть летящими с очень большой скоростью. Для их получения в лабораторных условиях используют различного рода ускорители, одним из которых и является циклический ускоритель (циклотрон).

В циклотроне заряженная частица, размещенная между полюсами электромагнита,  многократно проходит через электрическое поле. В каждый проход она наращивает свою энергию от нескольких сотен до нескольких тысяч электрон – вольт. Для периодического возвращения и управления движением заряженной частицы применяют поперечное магнитное поле.

На совершающую движение в постоянном магнитном поле частицу будет действовать сила Лоренца, результатом чего станет движение заряженного элемента по окружности постоянного радиуса в случае если масса и скорость его останутся неизменными:

Сила Лоренца FЛ, которая направлена по радиусу к центру окружности, вызовет центростремительное ускорение и согласно 2-му закону Ньютона будет равна:

Где: R – радиус орбиты, m – масса заряженной частицы, V – ее скорость. Из этого можно сделать вывод, что FЦ = FЛ, или:

Где: q – величина заряда, В – индукция магнитного поля (векторы В и V взаимно перпендикулярны, то есть sin α = 1). Из этой формулы получаем выражение для угловой скорости частицы:

Если B, q и m – величины постоянные, то скорость угловая, а следовательно и количество оборотов частицы в секунду тоже являют собой величину постоянную, не зависящими от ее энергии. Однако радиус орбиты все же зависит от скорости движения, так как это следует из равенства (1):

С ростом энергии заряженного элемента и увеличением его скорости радиус орбиты увеличивается, именно поэтому элемент в ускорителе (например, циклотроне), будет двигаться по спирали.

Схема устройства циклотрона показана на рисунке ниже:

На два металлических электрода 3, помещенные между полюсами электромагнита, который в свою очередь состоит из обмоток 2 и магнита 1,  подается высокое напряжение от высокочастотного генератора (рисунок а)). Очень часто электроды называют дуантами из-за их похожести на заглавную латинскую букву D.

В промежутке между дуантами вблизи центра магнита расположен источник 4 заряженных элементов (ионов). Вся система из ионного источника и электродов помещается в вакуумную камеру 5, разрежение в которой достигает 10-5 мм рт. ст. Положительный ион будет вылетать из источника в то время, когда электрод 1 имеет отрицательный потенциал.

Он приобретет некоторую скорость и в полости дуанта I опишет полуокружность постоянного радиуса, так как внутри дуанта электрическое поле отсутствует (рисунок б)). К моменту выхода иона из дуанта I высокочастотный генератор изменит направление электрического поля на обратное: дуант II получит отрицательный потенциал, а дуант I положительный.

Это приведет к ускорению иона и внутри дуанта II он опишет полуокружность уже большего радиуса. Двигаясь в резонансе с высокочастотным полем, ионы будут по спирали приближаться к краю полюса магнита. Их энергия будет возрастать после каждого прохождения частицей ускоряющей цепи между дуантами.

Пучок ускоренных положительных ионов выводится из циклотрона благодаря отклоняющему электроду 6 (рисунок б)), на который подают отрицательный потенциал. Проходя мимо него, пучок ионов изменяет свою траекторию и через окошко, закрытое тонкой фольгой выходит из камеры.

Циклотрон используют в качестве ускорителя тяжелых частиц – положительных многозарядных ионов и протонов. В циклотроне присутствуют причины, которые ограничивают возможности значительного увеличения энергии ионов.

Кинетическая энергия любой частицы равна E = mV2/2. Поэтому для получения частиц с очень большим запасом энергии их нужно разгонять до очень большой скорости, практически равной скорости света.

Из теории относительности известно, что масса заряженной частицы зависит от ее движения и скорости:

Где: m0 – масса частицы в покое, V – ее скорость, с – скорость света. В условиях, когда и V« c, массу тела можно считать строго постоянной. Однако в ускорителях, где частица разгоняется до скорости близкой к скорости света, с этой массой пригодиться считаться. Из формулы (2) можно получить выражение периода вращения заряженной частицы в циклотроне:

То есть период обращения прямо пропорционален массе элемента. Поэтому по мере ускорения частиц растет период обращения, а период высокочастотного поля остается неизменным. В результате при каждом последующем попадании в ускоряющую щель элементы будут опаздывать, приобретая меньшую энергию, пока не начнут попадать в тормозящее поле.

Для разгона электронов используют другой ускоритель – бетатрон, в котором используется вихревое электрическое поле. Однако энергия, получаемая элементами с помощью циклотрона, не удовлетворяла ученых. Для достижения большей энергии частиц используют два приема:

  • С увеличением периода обращения частицы уменьшается частота высокочастотного генератора. Ускорители, использующие этот принцип, носят название фазотрон;
  • При неизменной частоте электрического ускоряющего поля увеличивают магнитное поле. Если сохранять отношения m/B неизменным, то есть с ростом массы частицы плавно увеличивать индукцию поля, то период ее обращения также будет постоянным. На этом принципе работают ускорители типа синхрофазотрон и синхротрон.

Источник: https://elenergi.ru/uskoriteli-zaryazhennyx-chastic-ciklotron.html

История ускорителя частиц — Знаешь как

История развития ускорителей заряженных частиц

Богатый событиями в ядерной физике 1932 г. ознаменовался и другими важными достижениями в этой области. Главнейшим из этих достижений было расщепление ядра лития искусственно ускоренными протонами. Еще в 1922 г.

Резерфорд, сравнивая ядра с хорошо защищенной крепостью, указывал, что «лишь α-частицы, как наиболее концентрированные источники энергии, являются наиболее подходящими для нападения на эти хорошо защищенные сооружения».

Далее он говорил: «Если бы в нашем распоряжении были заряженные атомы с энергией, в десять раз превосходящей энергию α-частицы радия, то, вероятно, мы могли бы проникнуть в нуклеарную структуру всех атомов, а иногда вызвать их разрушение».

Частицы, ускоряемые сегодня на Серпуховском ускорителе, обладают энергией, в тысячу раз большей, чем та, о которой мечтал Резерфорд. Путь к получению частиц высокой энергии начался в 30-х годах.

Именно тогда начали разрабатывать ускорители заряженных частиц. Уже в 1928 г. с помощью последовательно соединенных трансформаторных обмоток удалось получить напряжение 750 кв. В 1931 г.

Ван-де-Грааф построил электростатический ускоритель, позволяющий ускорить ионы до нескольких миллионов электрон-вольт.

В 1930 г. в Кембридже Кокрофт и Уолтон, применяя каскадный метод увеличения напряжения, получили водородные ионы, ускоренные до нескольких сот киловольт. В 1932 г.

, направляя усиленные таким образом ионы на литиевую мишень, они осуществили расщепление ядра два ядра гелия. Ядра гелия разлетались энергиейоколо 8,5 Мэв.

 Это была первая ядерная реакция, осуществленная на ускорителе, и авторы ее Джон Кокрофт (1897— 1967) и Э. Уолтон были удостоены в 1951 г. Нобелевской премии.

В 1931 г. Слоан и Лоуренс (1901— 1958) построили линейный ускоритель ионов, в котором ионы, проходя через ряд цилиндров увеличивающейся длины, ускорялись высокочастотным напряжением, подобранным так, что в зазоре между цилиндрами ионы попадали в ускоряющую фазу.

Но особенно важным для развития ядерной физики было создание циклического ускорителя — циклотрона.

Принцип циклотрона был предложен Лоуренсом и Эдлефсеном в 1930 г. В 1932 г. под руководством Лоуренса был построен циклотрон с диаметром полюсных наконечников 28 см,ускоряющий протоны до 1,2 Мэв.В 1934 г. Лоуренс за изобретение циклотрона был удостоен Нобелевской премии.

В июле 1932 г. на V Международной конференции по электричеству состоялось обсуждение проблем ядерной физики. С обзорным докладом «Современное состояние физики атомного ядра» выступил Энрико Ферми.

В этом докладе Ферми все еще держался гипотезы: «Все атомные ядра состоят из двух частиц — электронов и ядер водорода (протонов)».

Далее Ферми указывал, что некоторые ядра «обладают собственным механическим моментом», выраженным целым или полуцелым числом в единицах — . Существование момента ядра обнаруживается в таких явлениях:

а) чередование интенсивностей в полосатых спектрах;

б) сверхтонкая структура спектральных линий атомов.

Ферми указывал далее, что «любая система из протонов и электронов должна:

а) подчиняться статистике Бозе—Эйнштейна или принципу Паули в зависимости от того, является ли число частиц этой системы четным или нечетным;

б) иметь собственный момент, равный целому числу или кратному целому числу, деленному на 2, в зависимости от того, четно или нечетно число частиц в системе».

Ядро азота не подчиняется этим правилам, согласно которым для ядра азота должен быть справедлив принцип Паули, в то время как наблюдения Разетти над раман-эффектом для молекулы азота показали, вне всякого сомнения, что для ядра азота справедлива статистика Бозе — Эйнштейна. «Отсюда был сделан вывод,— пишет Ферми,— что эта аномалия возникает вследствие того, что ядро атома азота содержит нечетное число электронов».

Как видно, в июле 1932 г. «азотная катастрофа» продолжала существовать.

Ферми подробно останавливается на теории α-распада, предложенной Гамовым в 1928 г. Гамов, а также Герни и Кондон применяли к испусканию α-частицы ядром идеи волновой механики, развитые для анализа прохождения частиц через потенциальный барьер. Эта теория была одним из достижений новой квантовой механики.

В отношении β-распада существует трудность, связанная с непрерывным спектром энергии β-частиц. «Этот факт,— писал Ферми,— имеет большую теоретическую важность, поскольку он, по-видимому, находится в противоречии со всеми теориями атомного ядра, в которых предполагается справедливость принципа сохранения энергии».

Ферми упоминает о гипотезе Паули, предпринятой для объяснения этого противоречия. Он пишет: «Согласно предположению Паули было бы возможно вообразить, что внутри атомного ядра находятся нейтроны, которые испускались бы одновременно с β-частицами.

Эти нейтроны могли бы проходить через большие толщи вещества, практически не теряя своей энергии, и потому были бы практически ненаблюдаемы».

Ферми пришлось употребить в своем докладе слово «нейтрон» дважды. В заключительных заметках он говорит об интерпретации Чадвиком бериллиевого излучения:

«Продолжая опыты Боте, а также И. Кюри и Ф. Жолио, Чадвик сумел доказать, что излучение бериллия способно сообщить движение также ядрам тяжелее протона; в связи с этим он выдвинул гипотезу, что излучение бериллия представляет собой не γ-лучи, а нейтроны с массой, равной массе протона».

Термин «нейтрон» сохранился для нейтральных частиц с массой протона. «Нейтроны» же Паули по предложению Ферми были названы на Сольвеевском конгрессе 1933 г. «нейтрино». На конгрессе же 1932 г. Ферми пришлось давать разъяснение по поводу термина «нейтрон» в β-распаде.

Ему резонно возразили, что нейтроны из-за их массы не могут играть той роли, какая им приписывалась гипотезой Паули. Ферми отвечал, что «такими нейтронами являются не те, которые были открыты, но нейтроны с гораздо меньшей массой».

Именно Ферми в дальнейшем удалось построить теорию р-распада, основанную на гипотезе нейтрино.

В 1933 г. происходило освоение идей, внесенных в ядерную физику. Помимо уже упоминавшейся конференции по атомному ядру, состоявшейся в Ленинграде в сентябре 1933 г., проблемы ядра обсуждались на седьмом Сольвеевском конгрессе, состоявшемся в октябре 1933 г.

Конгресс был очень представительным, председательствовал П. Ланжевен. В работе конгресса принимали участие Э. Резерфорд, Н. Бор, М. Склодовская-Кюри, Дж. Чадвик, П. Блэккет, Дж Кокрофт, В. Боте, В. Гейзенберг, Э. Шредингер, В. Паули, Э. Ферми, Лун де Бройль, П. Дирак и другие физики.

От советских ученых в конгрессе принимал участие А. Ф. Иоффе.

На конгрессе большое место заняли выступления сотрудников Кавендишской лаборатории во главе с Резерфордом. Кокрофт доложил о своих и Уолтона опытах по расщеплению ядер лития ускоренными протонами, Чадвик сделал доклад об открытии нейтрона, об открытии нейтрона говорили также Ф. Жолио и И.

Кюри, Блэккет рассказал об открытии позитрона, в котором важную роль сыграли его и Оккиалини исследования с камерой Вильсона, управляемой счетчиками Гейгера — Мюллера. В этих исследованиях были открыты ливни космических частиц, состоящие из позитронов и электронов.

Лоуренс доложил об опытах с циклотроном, Гейзенберг — о протонно-нейтронной модели ядра.

Новые идеи прозвучали на Сольвеевском конгрессе во весь голос, их горячо поддерживал основоположник науки о ядре Э. Резерфорд. «Центральной фигурой на Сольвеевском конгрессе,—вспоминал Бор—был, конечно, Резерфорд, как всегда с необыкновенной энергией принимавший участие во многих дискуссиях».

Его ученики и он сам много способствовали развитию «современной алхимии», как называл Резерфорд науку о превращении ядер. Это было последнее его участие в Сольвеевском конгрессе, да и сам конгресс по существу был последним.

Международное научное общение было нарушено захватом власти в Германии фашистами и второй мировой войной.

Заметим, что протонно-нейтронная модель ядра, предложенная Иваненко, была активно поддержана Гейзенбергом. Она была высказана Майораной, опубликовавшим в 1933 г.

статью о модели ядра, состоящего из протонов и «нейтральных протонов».

Период протонно-электронной модели ядра кончился, начался новый плодотворный период в развитии ядерной физики, проходивший под знаком протонно-нейтронной модели ядра.

Статья на тему История ускорителя частиц

Источник: https://znaesh-kak.com/e/f/%D0%B8%D1%81%D1%82%D0%BE%D1%80%D0%B8%D1%8F-%D1%83%D1%81%D0%BA%D0%BE%D1%80%D0%B8%D1%82%D0%B5%D0%BB%D1%8F-%D1%87%D0%B0%D1%81%D1%82%D0%B8%D1%86

История развития ускорителей заряженных частиц (стр. 1 из 3)

История развития ускорителей заряженных частиц

Реферат на тему:

История развития ускорителей заряженных частиц

Выполнил студент

Жучков Д.В.

Введение

Ускорители заряженных частиц — устройства для получения заряженных частиц (электронов, протонов, атомных ядер, ионов) больших энергий. Ускорение производится с помощью электрического поля, способного изменять энергию частиц, обладающих электрическим зарядом.

Магнитное поле может лишь изменить направление движения заряженных частиц, не меняя величины их скорости, поэтому в ускорителях оно применяется для управления движением частиц (формой траектории). Обычно ускоряющее электрическое поле создаётся внешними устройствами (генераторами).

Но возможно ускорение с помощью полей, создаваемых другими заряженными частицами; такой метод ускорения называется коллективным.

Ускоритель заряженных частиц следует отличать от плазменных ускорителей, в которых происходит ускорение в среднем электрически нейтральных потоков заряженных частиц (плазмы).

Описание ускорителя заряженных частиц

Ускоритель заряженных частиц — один из основных инструментов современной физики. Ускорители являются источниками, как пучков первичных ускоренных заряженных частиц, так и пучков вторичных частиц (мезонов, нейтронов, фотонов и др.), получаемых при взаимодействии первичных ускоренных частиц с веществом.

Пучки частиц больших энергий используются для изучения природы и свойств элементарных частиц, в ядерной физике, в физике твёрдого тела. Всё большее применение они находят и при исследованиях в др. областях: в химии, биофизике, геофизике.

Расширяется значение ускорителя заряженных частиц различных диапазонов энергий в металлургии — для выявления дефектов деталей и конструкций (дефектоскопия), в деревообделочной промышленности — для быстрой высококачественной обработки изделий, в пищевой промышленности — для стерилизации продуктов, в медицине — для лучевой терапии, для «бескровной хирургии» и в ряде др. отраслей.

Стартовой точкой ускорителя является источник заряженных частиц. Например, источником электронов может служить любой нагретый кусок металла, из которого постоянно выскакивают электроны и тут же возвращаются обратно.

Если рядом поместить проволочную сетку и приложить к ней напряжение, эти электроны потянутся к ней и, пролетев насквозь, устремятся к экрану-аноду, образовав пучок частиц невысокой энергии.

Именно так работает «домашний ускоритель на 10 кэВ» — электронно-лучевая трубка в старых телевизорах.

10 кэВ — это очень небольшая энергия, для изучения ядерных явлений ее недостаточно. Поэтому эру ускорительной техники физики отсчитывают от начала 1930-х годов, когда появились сразу две схемы ускорения частиц до энергий около 1 МэВ.

В 1932 году Джон Дуглас Кокрофт и Эренст Уолтон в Кембридже сконструировали каскадный 800-киловольтный генератор постоянного напряжения, который открыл новую эру в экспериментальной ядерной физике.

Уже в первом своем эксперименте они направили пучок ускоренных протонов на мишень из лития-7 и наблюдали самую настоящую ядерную реакцию: ядро лития захватывало протон и затем разваливалось на две альфа-частицы.

Считается, что о машине для ускорения заряженных частиц первым задумался Резерфорд, высказавший эту идею в 1927 году на сессии Лондонского Королевского общества. Но у отца-основателя ядерной физики были предшественники.

В 1919 году 17-летний школьник из Осло Рольф Видероэ прочел в газете, что Резерфорд разбил на осколки ядра азота, бомбардируя их альфа-частицами, испускаемыми радиевым источником. Мальчик сообразил, что скорость частиц и, следовательно, сила удара увеличатся, если разогнать их в постоянном электрическом поле.

При этом Рольф достаточно разбирался в физике, чтобы понять, что этот путь не самый лучший, так как необходимую разность потенциалов в миллионы вольт получить чрезвычайно трудно. Рольф решил, что для разгона частиц стоит использовать следствия уравнений электродинамики, о которых он кое-что знал.

После окончания школы Видероэ поехал в Германию изучать электротехнику в политехническом университете в Карлсруэ, а через три года набросал в блокноте схему кольцевого ускорителя, разгоняющего электроны с помощью вихревого электрического поля, возникающего (в полном соответствии с уравнениями Максвелла!) при периодическом изменении магнитного потока.

Фактически это обыкновенный электрический трансформатор, в котором одна из катушек заменена вакуумной камерой. Видероэ определил параметры магнитных полей, необходимые для того, чтобы все электроны могли набирать скорость на одной и той же круговой орбите.

Это и был проект первого в мире ускорителя элементарных частиц, причем с точки зрения теории абсолютно безупречный. А до выступления Резерфорда оставалось еще четыре года…После защиты диплома Рольф вернулся на родину для прохождения военной службы, а затем опять поехал в Германию работать над диссертацией.

Будучи экспериментатором, он решил воплотить свою схему в железе. Видероэ предполагал построить установку, разгоняющую электроны до 6 МэВ, но тут его постигло разочарование — электроны не желали оставаться на стабильной орбите.

Для их фокусировки требовалось дипольное магнитное поле, но физики осознали это лишь десять лет спустя: в 1940 году профессор университета штата Иллинойс Дональд Керст построил первый действующий индукционный ускоритель электронов на 2,3 МэВ (сейчас такие машины называют бетатронами, в память о тех временах, когда электроны именовали бета-частицами; крупнейший в мире бетатрон на 300 МэВ, построенный тем же Керстом, был введен в действие в 1950 году).Поскольку кольцевой ускоритель не действовал, а сроки защиты приближались, Видероэ решил построить линейный ускоритель, схему которого в 1925 году придумал шведский физик Густав Изинг. Машина была недостаточно мощной и потому бесполезной для серьезных экспериментов, но она всё же ускоряла в бегущем электрическом поле ионы натрия до 50 КэВ. Поле было переменным по необходимости, его частота изменялась таким образом, чтобы оставаться в фазе с набирающими скорость частицами. В 1928 году Видероэ благополучно защитился и опубликовал свою работу.В 1943 году он — кажется, первым в мире — понял, что для повышения энергии соударения частиц их можно сталкивать лоб в лоб, предварительно собирая в тороидальных вакуумных камерах, помещенных в магнитное поле. Сегодня такие устройства называют накопительными кольцами, Видероэ же назвал их «ядерными мельницами». Он запатентовал свою конструкцию в Германии, но в условиях военного времени патент засекретили. Обе его идеи были осуществлены, но много позже и другими людьми. Первое в мире накопительное кольцо было построено в 1961 году в Итальянской национальной лаборатории в городе Фраскати под руководством Бруно Тушека, младшего коллеги Видероэ. А сам Видероэ после войны успешно трудился в фирме, которая изготовляла бетатроны, применявшиеся в онкологических больницах как мощные источники рентгеновского излучения. Пришло к нему и научное признание, хотя и с запозданием — он стал консультантом в ЦЕРНе и в немецкой лаборатории физики высоких энергий DESY. Но так уж сложилось, что широкой публике этот ученый известен гораздо меньше, чем прочие классики ускорительных технологий.

Линейные ускорители

Прибор Видероэ был чисто демонстрационным. Первый «рабочий» линейный ускоритель построили в 1932 году сотрудники Кавендишской лаборатории Джон Кокрофт и Эрнест Уолтон, спустя 19 лет удостоенные Нобелевской премии. Эта машина разгоняла протоны до энергии в 500 КэВ, что позволило взломать ядра лития: ядро лития захватывало протон и затем разваливалось на две альфа-частицы.

В 1930-е годы эта система (так называемый каскадный генератор) использовалась довольно широко, но лишь для получения энергий до 1 МэВ (в этом качестве ее используют и поныне). А вот схема Изинга обладает куда лучшими возможностями. По идее она очень проста.

Заряженная частица покидает источник и летит по вакуумной камере сквозь множество соосных полых металлических трубок, расположенных вдоль прямой линии. На эти трубки подается переменное электрическое поле, которое частица «ощущает», лишь когда пролетает через зазор (внутри трубок оно экранируется).

Таким образом, в трубках частицы летят по инерции — дрейфуют (поэтому трубки и называют дрейфовыми). Частота колебаний электрического потенциала подобрана так, чтобы при прохождении каждого зазора частица ускорялась, а не тормозилась.

Набрав расчетную энергию, частицы попадают на мишень (на практике их приходится дополнительно фокусировать, например, с помощью магнитных линз). Понятно, что параметры дрейфовых трубок определяются видом ускоряемых частиц.

Если это электроны, которые быстро набирают почти световую скорость, длина трубок может быть одинаковой. Тяжелые частицы, протоны и ионы, разгоняются постепенно, поэтому их надо прогонять через дрейфовые трубки возрастающей длины. Именно такую конструкцию и предложил Изинг.

Через двадцать лет ее переоткрыл американец Луис Альварес, и теперь схема носит его имя. В 1946 году Альварес и Вольфганг Панофски построили в Беркли первый в мире линейный ускоритель, который разгонял протоны до энергии в 32 МэВ, вполне достаточной для экспериментов в области ядерной физики.

Для создания ускоряющего поля они воспользовались деталями радиолокаторов, которых, конечно, не было во времена Изинга. Схема Альвареса хорошо работает для разгона протонов до 200 МэВ. Более высокие энергии получают с помощью волноводов с бегущей волной, которые используют и в электронных линейных ускорителях.

Протонная карусельРольф Видероэ косвенным образом приложил руку и к изобретению циклотрона. Как ни странно, стимулом для создания этой машины стала его статья о линейном ускорителе. Эта малоизвестная история хорошо иллюстрирует, сколь непростым путем развивается научное знание.

Прибор Видероэ (единственная дрейфовая трубка с парой ускоряющих зазоров по краям) полностью воплощал ключевую идею Изинга — частицы бОльшую часть пути проходят по инерции и только

Источник: https://mirznanii.com/a/322559/istoriya-razvitiya-uskoriteley-zaryazhennykh-chastits

Vse-referaty
Добавить комментарий