Каучук и резина и их промышленное получение

Содержание
  1. Урок №62. Синтетические каучуки. Строение, свойства, получение и применение. – ХиМуЛя.com
  2. Каучук. Резина
  3. Отличие каучука и резины
  4. Свойства каучука
  5. Каучук, свойства и характеристики, получение и применение
  6. Каучук – что это?
  7. Натуральный каучук, характеристики и свойства, состав:
  8. Типы и виды натурального каучука:
  9. Синтетический каучук, виды, его свойства, получение, производство и синтез:
  10. Резины и их промышленное получение
  11. 2.1. Ингредиенты резиновых смесей
  12. Каучук и резина и их промышленное получение
  13. Каучук — виды, получение и применение
  14. Вулканизация каучука
  15. Состав резины
  16. Глава 1. Каучуки
  17. О – О О – О О – О
  18. О О О О О О
  19. Синтетический каучук
  20. Введение
  21. Виды синтетических каучуков
  22. Формула строения
  23. Свойства и применение
  24. Производство резины и резинотехнических изделий: оборудование и технология. Из чего делают резину
  25. Из какого сырья делают резину?
  26. Добавки для модификации резиновых смесей
  27. Этапы процесса изготовления резиновых изделий
  28. Вулканизация как завершающий этап производства
  29. Как производятся резинотехнические изделия?
  30. Оборудование для процессов изготовления резины
  31. Заключение

Урок №62. Синтетические каучуки. Строение, свойства, получение и применение. – ХиМуЛя.com

Каучук и резина и их промышленное получение

Повторитетему «Понятие о диеновых углеводородах. Природный каучук»

Историяоткрытия и применения каучука

Эластомеры (натуральные илисинтетические каучуки) – природные или синтетические высокомолекулярныевещества, отличающиеся от других высокомолекулярных соединений своейэластичностью.

Молекулы эластомеров представляют собойскрученные в клубки цепи углеродных атомов. При растяжении цепи вытягиваются, апри снятии внешней нагрузки – скручиваются. Этим объясняется эластичностькаучуков.

Таблица. Важнейшие виды синтетических каучуков

НазваниеИсходный мономерФормула каучукаСвойства, применение
БутадиеновыйCH2=CH-CH=CH2бутадиен-1,3      нерегулярное строениеВодо- и газонепроницаемость. По эластичности уступает природному каучуку. В производстве кабелей, обуви, принадлежностей быта
ДивиниловыйCH2=CH-CH=CH2бутадиен-1,3регулярное строениеПо износоустойчивости и эластичности превосходит природный каучук. В производстве шин.
ИзопреновыйCH2=C(CH3)-CH=CH22-метилбутадиен-1,3регулярное строениеПо эластичности и износоустойчивости сходен с природным каучуком. В производстве шин
ХлоропреновыйCH2=C(Cl)-CH=CH22-хлорбутадиен-1,3Устойчив к воздействиям высоких температур, бензинов и масел. В производстве кабелей, трубопроводов для перекачки бензина, нефти.
Бутадиен-стирольныйCH2=CH-CH=CH2бутадиен-1,3иC6H5- CH=CH2стиролХарактерна газонепроницаемость, но недостаточная жароустойчивость. В производстве лент для транспортёров, автокамер.


Получение каучуков

Одно дерево  бразильской  гевеи в  среднем,  до недавнего  времени,  было

способно давать лишь  2-3 кг  каучука  в  год;  годовая производительность

одного гектара  гевеи  до Второй  Мировой  войны  составляла 300—400  кг технического каучука. Такие объёмы  натурального каучука  не удовлетворяли растущие  потребности  промышленности.   Поэтому  возникла  необходимость получить синтетический каучук.  Замена натурального  каучука синтетическим даёт огромную экономию труда.

Первый синтетический каучук, был получен по методу С.В. Лебедева из спирта:

2CH3-CH2-OH    t=425,ZnO,Al2O3→    CH2=CH-CH=CH2 + H2+ 2H2O

при полимеризации дивинила под действиемметаллического натрия, представлял собой полимер нерегулярного строения сосмешанным типом звеньев 1,2- и 1,4-присоединения:

В присутствии органических пероксидов(радикальная полимеризация) также образуется полимер нерегулярного строения созвеньями 1,2- и 1,4- присоединения. Каучуки нерегулярного строенияхарактеризуются невысоким качеством при эксплуатации.

Избирательное1,4-присоединение происходит при использовании металлорганических катализаторов(например, бутиллития C4H9Li, который не толькоинициирует полимеризацию, но и определенным образом координирует в пространствеприсоединяющиеся молекулы диена):

Таким способом получен стереорегулярный1,4-цис-полиизопрен – синтетический аналог натурального каучука. Данныйпроцесс идет как ионная полимеризация.

Реакция получения каучуков реакциейполимеризации: 

Реакция получения каучуков реакциейсополимеризации:

Для практического использования каучукипревращают в резину.

Резина – этовулканизованный каучук с наполнителем (сажа). Суть процесса вулканизациизаключается в том, что нагревание смеси каучука и серы приводит к образованиютрехмерной сетчатой структуры из линейных макромолекул каучука, придавая емуповышенную прочность. Атомы серы присоединяются по двойным связям макромолекули образуют между ними сшивающие дисульфидные мостики: 

Сетчатый полимер более прочен ипроявляет повышенную упругость – высокоэластичность (способность к высокимобратимым деформациям).

В зависимости от количества сшивающегоагента (серы) можно получать сетки с различной частотой сшивки. Предельносшитый натуральный каучук – эбонит(более 30% S) – не обладаетэластичностью и представляет собой твердый материал.

Источник: https://www.sites.google.com/site/himulacom/zvonok-na-urok/10-klass---tretij-god-obucenia/urok-no62-sinteticeskie-kaucuki-stroenie-svojstva-polucenie-i-primenenie

Каучук. Резина

Каучук и резина и их промышленное получение
натуральный латекс и каучук из него Что такое каучук

Кроме сложных веществ наподобие полиэтиленов, представляющих из себя высокомолекулярные полимеры, существует класс химических веществ, который образован сопряжёнными диенами.

После процесса полимеризации диенов образуются новые химические вещества, имеющие высокомолекулярную структуру, называемые каучуками.

Каучук был уже известен в конце 15 веке в северной Америке. Именно индейцы в то время использовали его для изготовления обуви, небьющихся вещей и посуды. А получали тогда его из сока растения гевеи, который называли – «слёзы дерева».

Что касается европейцев, то о каучуке узнали впервые только в момент открытия Америки. Именно Кристофор Колумб первым узнал о его свойствах и получении. В Европе каучук долгое время не мог найти себе применение.

В 1823 г в первые было предложено использование этого материала для изготовления водонепроницаемых плащей и одежды. Каучуком и органическим растворителем пропитывали ткань, таким образом, ткань приобретала водостойкие свойства.

Но, конечно же, был замечен и недостаток, который заключался в том, что ткань, пропитанная каучуком, прилипала в жаркую погоду к коже, а при морозе – растрескивалась.

Отличие каучука и резины

изопрен (2-метилбутадиен-1,3 (изопрен)) бутадиен-1,3 Натуральный изопреновый каучук Синтетический бутадиеновый каучук

Через 10 лет после первого применения натурального каучука и более детального изучения его химических физических свойств было предложено вводить каучук в оксиды кальция и магния. А ещё через 5 лет после изучения свойств нагретой смеси оксидов свинца и серы с каучуком научились получать резину. Сам процесс превращения каучука в резину назвали вулканизацией.

Конечно же, каучук отличается от резины. Резина – это «сшиты» полимер, который способен распрямляться и снова сворачиваться при растяжении и при действии механической нагрузки.

Резина – это также «сшитые» макромолекулы, которые не способы к кристаллизации при охлаждении и не плавятся при нагревании.

Тем самым резина – более универсальный материал, чем каучук, и способен сохранять свой механические и физические свойства про более широком диапазоне температур.

В начале 20 века, когда появился первый автомобиль, спрос на резину значительно возрос. В то же время возрос спрос и на натуральный каучук, так как на тот момент вся резина изготавливалась из сока тропических деревьев.

Например, чтобы получить тонну резины, необходимо было обработать почти 3 тонны тропических деревьев, при этом работой было занято одновременно более 5 тысяч человек, причём такую массу резины могли получить только через год.

Поэтому, резина и натуральный каучук считались достаточно дорогим материалом.

Только в конце 20х годов русским учёным Лебедевым С.В. при химической реакции – полимеризации бутадиена-1,3 на натриевом катализаторе были получены образцы первого натрий-бутадиенового синтетического каучука.

Кстати, из курса физики 8-ого класса мы, вероятно, впервые познакомились с эбонитовой палочкой. Но что такое эбонит. Как оказывается, эбонит – это производная от процесса вулканизации каучука: если при вулканизации каучука добавить серу (около 32% от массы), то в результате получается твёрдый материал – этот материал и есть эбонит!

Одним из достаточно дешёвых способов получения бутадиена-1,3, является его получение из этилового спирта. Но только в 30-х годах было налажено промышленное производство каучука в России.

реакция получения бутадиена

В середине 30-х годов 20 века научились производить сополимеры, представляющие полимеризованный 1,3-бутадиен. Химическая реакция производилась в присутствии стирола или некоторых других химических веществ.

Вскоре получаемые сополимеры начали с большими темпами вытеснять каучуки, которые ранее широко использовались для производства шин.

Каучук бутадиен-стирольный получил широкое применение для производства шин легковых автомобилей, но для тяжёлого транспорта – грузовых автомобилей и самолётов, использовался натуральный каучук (или изопреновый синтетический).

В середине 20 века после получения нового катализатора Циглера — Натты был получен синтетический каучук, который по своим свойствам эластичности и прочности значительно выше, чем все ранее известные каучуки, – был получен полибутадиен и полиизопрен. Но как оказалось, к общему удивлению полученный синтетический каучук по своим свойствам и строению подобен натуральному каучуку! А к концу 20 века натуральный каучук был почти полностью вытеснен синтетическим.

Свойства каучука

Все хорошо знают, что при нагревании материалы способны расширяться. В физике даже имеются коэффициенты температурного расширения, для каждого взятого материала этот коэффициент свой. Расширению поддаются твёрдые тела, газы, жидкости.

Но что, если температура увеличилась на несколько десятков градусов?! Для твёрдых тел изменений мы не почувствуем (хотя они есть!).

Что касается высокомолекулярных соединений, например полимеров, их изменение сразу становится заметным, особенно если речь идёт об эластичных полимерах, способных хорошо тянуться. Заметным, да ещё к тому же с совсем обратным эффектом!

Ещё в начале 19 века английские учёные обнаружили, что растянутый жгут из нескольких полосок натурального каучука при нагревании уменьшался (сжимался), а вот при охлаждении – растягивался. Опыт был подтверждён в середине 19 века.

Вы сами с лёгкостью можете повторить этот опыт, подвесив на резиновую ленту грузик. Она растянется под его весом. Потом обдуйте её феном – увидите, как она сожмётся от температуры!

Почему так происходит?! К этому эффекту можно применить принцип Ле Шателье, который гласит, что если воздействовать на систему , находящуюся в равновесии, то это приведёт к изменению равновесия самой системы, а это изменение будет противодействовать внешним силовым факторам. То есть если на растянуть под действием груза жгуты каучука (система в равновесии) подействовать феном (внешнее воздействие), то система выйдет из равновесия (жгут будет сжиматься), причём сжатие – действие направлено в обратную сторону от силы тяжести груза!

При очень резком и сильном растяжении жгута он нагреется (нагрев может на ощупь быть и незаметным), после растяжения система будет стремиться принять равновесное состояние и постепенно охладится до окружающей температуры. Если жгуты каучука также резко сжать – охладится, далее будет нагреваться до равновесной температуры.

Что происходит при деформации каучука?

При проведённых исследованиях оказалось, что с точки зрения термодинамики, никакого изменения внутренней энергии при различных положениях (изгибах) этих каучуковых жгутов не происходит.

А вот если растянуть – то внутренняя энергия увеличивается из-за возрастания скорости движения молекул внутри материала.

Из курса физики и термодинамики известно, что изменение скорости движения молекул материала (тот же каучук) отражается на температуре самого материала.

дальнейшем, растянутые жгуты каучука будут постепенно охлаждаться, так как движущиеся молекулы будут отдавать свою энергию, например, рукам и другим молекулам, то есть произойдёт постепенное выравнивание энергии внутри материала между молекулами (энтропия будет близка к нулю).

И вот теперь, когда наш жгут каучука принял температуру окружающей среды, можно снять нагрузку. Что при этом происходит?! В момент снятия нагрузки молекулы каучука ещё имеют низкий уровень внутренней энергии (они же ей поделились при растяжении!).

Каучук сжался – с точки зрения физики была совершена работы за счёт собственной энергии, то есть своя внутренняя энергия (тепловая) была затрачена на возврат в исходное положение.

Естественно ожидать, что температура должна понизится, – что и происходит на самом деле!

Резина – как уже говорилось, высокоэластичный полимер. Её структура состоит из хаотично расположенных длинных углеродным цепочек. Крепление таких цепочек между собой осуществлено с помощью атомов серы. Углеродные цепочки в нормальном состоянии находятся в скрученном виде, но если резину растянуть, то углеродные цепочки будут раскручиваться.

Можно провести интересный опыт с резиновыми жгутами и колесом. Вместо велосипедных спиц в велосипедном колесе использовать резиновые жгуты. Такое колесо подвесить, чтобы оно могло свободно вращаться. В случае, если все жгуты одинаково растянуты, то втулка в центре колеса будет расположена строго по его оси. А теперь попробуем нагреть горячим воздухом какой-нибудь участок колеса.

Мы увидим, что та часть жгутов, которая нагрелась – сожмётся и сместит втулку в свою сторону. При этом произойдёт смещение центра тяжести колеса и соответственно колесо развернётся. После его смещения действию горячего воздуха подвергнутся следующие жгуты, что в свою очередь приведёт к их нагреванию и снова – к повороту колеса.

Таким образом, колесо может непрерывно вращаться!

Это опыт подтверждает факт того, что при нагревании каучук и резина будут сжиматься, а при охлаждении – растянутся!

Источник: https://www.kristallikov.net/page51.html

Каучук, свойства и характеристики, получение и применение

Каучук и резина и их промышленное получение

Каучук – это природный или синтетический продукт полимеризации некоторых диеновых углеводородов с сопряженными связями.

Каучук – что это?

Натуральный каучук, характеристики и свойства

Где содержится? Получение натурального каучука

Химическое строение натурального каучука и его состав

Типы и виды натурального каучука

Синтетический каучук, виды, его свойства, получение

Применение натурального и синтетического каучука

Каучук – что это?

Каучук – это природный или синтетический продукт полимеризации некоторых диеновых углеводородов с сопряженными связями. Их важнейшими физическими характеристиками являются эластичность (каучуки способны восстанавливать форму), электроизоляция, водо- и газонепроницаемость. Из каучуков путем вулканизации получают резины и эбониты.

Натуральный каучук, характеристики и свойства, состав:

Натуральный каучук известен с давних времен. Учеными найдены окаменелые остатки каучуконосных растений, их возраст – миллионы лет. Пятьсот лет назад, с открытием Америки, представители цивилизации узнали об этом материале. В то время индейцы бойко продавали белым людям бутылки и обувь из резины.

Однако, по-настоящему востребованным каучук стал сравнительно недавно, в 30-х годах XIX столетия: Чарльз Гудьир (Charles Goodyear) в 1839 году изобретя процесс вулканизации, получил резину. Для этого он нагревал каучук с серой, при этом свойства материала только улучшились. Так была изобретена резина, с этого и началось ее широкое применение.

К 1919 году на рынке уже существовало свыше сорока тысяч видов изделий с применением этого материала.

Каучук на 91-96 % состоит из полимера изопрена и имеет следующие характеристики и свойства: плотность 910-920 кг/м3, морозостой­кость или температура стеклования 70 °C (т.е. он перестает быть пластичным и обретает некоторые качества, свойственные стеклу), теплоустойчивость до 200 °C.

В большинстве жидкостей (вода, спирт, ацетон, жирные кислоты) не растворяется и в них не набухает. Набухая, постепенно растворяется в подобных себе веществах: бензине, бензоле, эфире, толуоле и других ароматических углеводородах.

Сжатие натурального каучука сопровождается поглощением, растяжение – выделением тепла.

При охлаждении каучук становится хрупким, при нагревании – размягчается. И в том и в другом процессе каучук теряет свою эластичность. Взаимодействие натурального каучука с озоном, кислородом и другими окислителями ведет к повышению хрупкости и появлению трещин. Т.е. повышается хрупкость, он «старится».

Как и большая часть полимеров, в зависимости от температуры каучук может быть в одном из трех состояний: высокоэластичном, вязкотекучем и стеклообразном. При обычных температурных условиях каучук высокоэластичен.

Более прочего каучук ценится вследствие своей эластичности. Изделия из него способны быстро возвращать себе первоначальную форму. Это происходит каждый раз, как только перестают действовать деформационные силы.

Упругость каучука одна из самых лучших в своем классе. Например, если изделие из него будут растягивать до 1000%, оно все равно вернется в свою исходную форму. К слову, для обычных твердых тел эта цифра равна 1%.

Эти уникальные свойства каучук сохраняет и при нагревании, и при охлаждении.

Кроме того, преимущество каучука проявляется еще и в том, что он обладает высокой пластичностью. Это означает, что под воздействием внешних сил этот материал будет приобретать и сохранять приданную ему форму. Во время механической обработки или нагревания это свойство особо заметно. Таким образом, каучук считается пласто-эластическим веществом.

Однако, у натурального каучука имеется недостаток: со временем он твердеет и вследствие этого теряет свои свойства.

Для природных каучуков сырьевым источником служит млечный сок некоторых растений, выделяющих латекс (белая жидкость с особыми свойствами). Сам латекс является довольно распространенным компонентом растений и встречается у представителей каучуконосных растений разных ботанических групп.

Находится он в разных частях растений. Поэтому их (т.е. растения) классифицируют следующим образом:

1. латексные, когда вещество накапливается в млечном соке,

2. хлоренхимные – вещество накапливается в молодых зеленых побегах и листьях,

3. паренхимные – вещество накапливается в корнях и стеблях,

4. травянистые латексные растения семейства сложноцветных – это кок-сагыз, крым-сагыз и другие, где каучук в небольшом количестве накапливается в подземных органах. Эти растения не используются в промышленном производстве каучука.

Каучуконосные деревья растут в основном в зоне экватора, не удаляясь от него больше, чем 10° на север и юг, т. е. это пояс шириной 1300 км и его так и называют: «каучуковый пояс».

Именно здесь выращивают каучуконосные деревья для промышленного применения в мировом масштабе. В основном натуральный каучук получают из латекса тропического дерева гевеи бразильской.

Для этого на коре дерева, достигшего 5-летнего возраста, делают V-образные надрезы. С одного дерева гевеи получают в среднем 2-3 кг каучука.

Чтобы получился каучук, добытый из гевеи бразильской, млечный сок (латекс) подвергают процессу свертывания или желатинирования, добавляя в него уксусную или муравьиную кислоту, после промывают водой, прокатывают в листы и коптят.

Натуральный каучук является полимерным ненасыщенный углеводородом, имеющим большое количество двойных связей. Его универсальная химическая формула выглядит так: (C5H8)n, где степень полимеризации (n) составляет 1000-3000 единиц. Мономер натурального каучука называется изопреном.

При химическом анализе природного каучука видно, что он состоит только из углерода и водорода. Это позволяет отнести его к углеводородам. Подтверждением этому есть первичная формула каучука. Молекулярная масса отдельных единиц может превышать полумиллион грамм на моль. Таким образом, натуральный каучук является природным полимером изопрена, а точнее цис-1,4-полиизопрена.

Если представить молекулу каучука не атомарно тонкой, ее можно было бы разглядеть в микроскоп, вследствие того, что она очень длинная. А если ее еще и максимально растянуть, то получится большая зигзагоподобная линия. Это обусловлено типом углеродных связей.

По причине того, что в изопрене чередуются одинарные и двойные связи, части молекулы могут вращаться только вокруг одинарных связей. И в результате подобных колебаний молекула постоянно изгибается, и даже в состоянии покоя у нее сближены концы.

Молекулы натурального каучука похожи на почти круглые пружины, что позволяет им легко и сильно растягиваться и увеличиваться в размерах при разведении концов.

Типы и виды натурального каучука:

Натуральный каучук делят на 8 типов, образующих 35 сортов.

Самым распространенным и ценным типом нату­рального каучука считается «смокед-шит», что означает копченый лист. Он изготавливается в виде достаточно прозрачных листов цвета янтаря с рифленой поверхностью.

Меньше распространен тип называемый «светлый креп». Для его получения к латексу перед желатинировани­ем добавляют для отбеливания бисульфит натрия. Листы этого типа каучука имеют кремовый оттенок, они непрозрачны.

Меньше всего ценится тип, который называют «пара-каучук». Его добывают из дикорастущей гевеи кустарным способом.

Синтетический каучук, виды, его свойства, получение, производство и синтез:

В XX веке с появлением автомобильной промышленности стал расти спрос на резину, значит и на каучук. Поэтому на каучук, получаемый из сока гевеи, появился дефицит. Встал вопрос получения синтетического каучука. В 1927 году советский ученый С.В.

Лебедев получил первый синтетический дивиниловый каучук с помощью реакции полимеризации 1,3-бутадиена при помощи натриевого катализатора. Теперь он стал настолько популярным, что почти вытеснил собой натуральный каучук.

Синтетический каучук разделяют на более чем 30 типов, которые образуют свыше 220 марок.

В настоящее время в России выпускается синтетический каучук специального и общего назначения. Кроме того, синтетический каучук подразделяют на стереорегулярный и нестереорегулярный.

Стереорегулярный, более прочный и износостойкий, чем натуральный каучук. Он применяется, например, как исходный материал для автомобильных покрышек.

Нестереорегулярный – используют в производстве эбонита и резины, более стойкой к воздействию агрессивных сред.

Синтетическими каучуками общего назначения считаются:

  1. 1. бутадиеновый каучук,
  2. 2. изопреновый каучук,
  3. 3. бутадиен-стирольный каучук,
  4. 4. бутил-каучук,
  5. 5. этилен-пропилено­вый каучук,
  6. 6. хлоропреновый (наирит)каучук и пр.

Синтетическими каучукам специального назначения являются:

  1. 1. бутадиен-нитрильный каучук,
  2. 2. кремнийорганический каучук,
  3. 3. уретановый СКУ,
  4. 4. полисуль­фидный каучук,
  5. 5. фторосодержащий каучук,
  6. 6. метил­винилпиридиновый каучук,
  7. 7. силоксановый каучук и т.д.

Ученые постоянно занимаются синтезом искусственных каучуков, которые по своим качествам представляют собой более совершенный материал, чем природные.

Например, по своим свойствам замечательными веществами являются сополимеры стирола, бутадиена и акрилонитрила. Во время процесса полимеризации их цепочка строится чередованием бутадиена с соответствующим другим мономером.

Это позволяет достигать отличных свойств, которых нет у классических каучуков.

В России сейчас изготавливают классический синтетический каучук, свойства которого схожи со свойствами натурального вещества. При вулканизации такого каучука получается резина, прочность, эластичность и пластичность которой практически не отличается от подобных, свойственных природному материалу.

Основным применением и натурального, и синтетического каучука является производство резины.

Резина является продуктом вулканизации каучука с наполнителем, в качестве которого выступает сажа. Вулканизация каучуку необходима по той причине, что каучук в чистом виде достаточно хрупкий и менее эластичный материал, чем вулканизированный.

При вулканизации каучука происходит обработка смеси каучука и серы под воздействием температуры.

Сутью вулканизации является процесс, при котором атомы серы присоединяются к нитевидным линейным молекулам каучука в местах двойных связей и как бы сшивают дисульфидными мостиками эти молекулы между собой, образуя при этом трехмерный сетчатый полимер.

Если для вулканизации каучука берётся 2-3 % серы от общей массы, то продуктом вулканизации явится резина.

Она менее подвержена колебанию температуры, механическому разрушению, воздействию газов и электрического тока, действию разных химических реагентов и летней жары, чем каучук.

Вдобавок, у вулканизированного каучука получается высокая степень трения скольжения по сухой поверхности и небольшая по влажной.

Если к каучуку добавить более, чем 30 % серы, то в процессе вулканизации получится эбонит: твердый материал, не обладающий пластичностью.

© Фото //www.pexels.com, //pixabay.com

карта сайта

Источник: https://xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai/kauchuk-svoystva-i-harakteristiki-poluchenie-i-primenenie/

Резины и их промышленное получение

Каучук и резина и их промышленное получение

Резину изготавливают с помощьювулканизации. Вулканизация – этоназвание смеси каучука с небольшимколичеством серы и наполнителем,предварительно сформированной в видебудущего изделия.

Каучук применяется для изготовлениярезины. Для этого составляют такназываемую резиновую смесь, в которуюкроме каучука вводят еще целый рядингредиентов, каждый из которых имеетопределенное название. Первый из нихявляется вулканизирующим агентом (чащевсего мера). В результате вулканизациикаучук превращается в прочную, эластичную,упругую массу – резину.

В результате вулканизации молекулыкаучука «сливаются» между собойдисульфидными мостиками в одну трехмернуюмакромолекулу, и образуется пространственныйполимер – резина.

Каучуки, вулканизированные только всмеси с вулканизирующими агентами, необладают необходимыми для различныхцелей жесткостью, сопротивлениемрастяжению, истиранию и разрыву. Этисвойства можно придать каучуку, добавляяв резиновую смесь так называемыенаполнители.

С целью предупреждения «старения»каучука, т.е. потери каучуком эластичностии других ценных свойств, в резиновуюсмесь вводят различные стабилизаторы– антиокислители (например,фенил-в-нафтиламин).

Чтобы ускоритьпроцесс вулканизации, в резиновую смесьвводят небольшие количества органическихсоединений, которые называют ускорителями(меркаптобензтиазол, дифенилгуанидини др.).

Оказалось, что наиболее эффективногоиспользования ускорителей вулканизациинеобходимо присутствие некоторых другиххимических веществ (обычно смесейметаллов), наиболее эффективно вприсутствии растворимых в каучуке мыл(солей жирных кислот), которые могутобразоваться в процессе вулканизации.

2.1. Ингредиенты резиновых смесей

Для получения высококачественнойрезины, которую можно переработать вразличные изделия, в каучук необходимодобавить ряд примесей.

Большую роль среди них играют такназываемые ускорители вулканизации –органические соединения, содержащиесеру или азот. Они значительно сокращаютвремя и снижают температуру процесса,а иногда позволяют проводить его вообщебез нагревания (холодная вулканизация).Благодаря этим добавкам можно уменьшитьколичество вводимой серы.

Очень важны также противостарители,которые уменьшают влияние кислородавоздуха на резину. С течением временикислород присоединяется к оставшимсяв молекулах резины двойным связям иусиливает тем самым образование сетчатыхмолекул, при этом резина теряет своихарактерные качества и становитсятвердой и ломкой. Противостарители –это антиокислители.

Еще на заре применения каучука-сырца,когда он был довольно дорог, предприимчивыефабриканты нашли дешевый способ увеличитьего количество. В каучук-сырец сталидобавлять наполнители – сажу, мел, окисьцинка и т.д.

Каково же было удивление,когда оказалось, что обработанный такимобразом каучук не только увеличиваетсяв весе, но и в ряде случаев, приобреталлучшие свойства – увеличивалосьсопротивление разрыву и растяжению,твердость.

Вскоре стали различать двегруппы наполнителей:

  1. активные наполнители, которые улучшают качество каучука. К ним среди прочих относятся активная газовая сажа, окись цинка и каолин;

  2. инертные наполнители, которые лишь увеличивают вес продукта, например, сажа, мел и тяжелый шпат.

Наиболее активным наполнителем оказаласьповерхностноактивная газовая сажа,которая может быть получена сжиганиемгаза при недостатке кислорода.

Сегоднянет ни одного сорта резины, который несодержал бы различных примесей инаполнителей. Правильный выбор исоответствующее соотношение количестваэтих примесей определяют качестворезины.

В этой области, несомненно,предстоит еще интересные и важныеоткрытия.

Примеси и наполнители могут составлятьзначительную часть общего веса, а нередковообще превышают вес самого каучука.Как многообразны и сложны могут бытьпримеси, добавляемые в каучук-сырец,видно на примере резины для автомобильныхшин.

Смешение каучука с ингредиентамипроводится в специальных аппаратах –резиносмесителях, в которых каучукперетирается вместе с ингредиентами.Вулканизирующий агент вводится врезиновую смесь в последний моментприготовления резиновой смеси воизбежание преждевременной вулканизации.

Готовую резиновую смесь, состоящую изкаучука, вулканизирующего агента,ускорителя вулканизации, активатора,наполнителей, стабилизатора и т.п.

,направляют на завершающий процессрезинового производства – вулканизацию.

Вулканизацию проводят или послеформования из резиновой смесисоответствующих изделий (труб, рукавов,листов и других), или одновременно спроцессом формования изделий. Вулканизацияпротекает при нагревании.

Чтобы повысить эксплуатационные качестванекоторых видов резиновых изделий,например, шин, транспортных шин, приводныхремней и т.п., в конструкцию таких изделийвводят корд-безуточную ткань из крученойпряжи, служащую тканевой основой изделий(их каркасом).

Ингредиенты резиновых смесей: главное– это каучук; ускорители процессавулканизации (дифенилгуанидин,дитио-бис-бензтиазол (альтакс),тетраметилтиурамдисульфид (тиурам),маркаптобензотиавзол (каптакс); мягчители(дибутилфталат, жирные кислоты, вазелин,сосновая смола, рубракс, парафин);противостарители (фенолы, воск,фенил-в-нафтиламин); активные наполнители(сажа, двуокись кремния, цинковые белила,каолин); красители. Ингредиенты улучшаюттехнологические свойства резиновыхсмесей и повышают качество получаемыхизделий.

2.2. Изготовление резиновых изделий

Производство резиновых изделий состоитиз трех основных стадий: приготовлениясырой резиновой смеси, формованияизделия и его вулканизации.

Приготовление сырых резиновых смесейвключает операции:

  1. подготовка каучука и ингредиентов (развеска, дозировка, прорезинивание тканей, раскрой, получение заготовок и т.п.);

  2. приготовление сырой резиновой смеси (смешение);

  3. листование полученных смесей.

Источник: https://studfile.net/preview/440519/page:2/

Каучук и резина и их промышленное получение

Каучук и резина и их промышленное получение
Читать далее: Природный каучук

содержание

Введение……………………………………………..
Глава 1.Каучуки……………………………………..
1.1.Природный каучук……………………………..
1.2.Синтетический каучук………………………….
Глава 2.Резины и их промышленное получение……………..
2.1.Ингредиенты резиновых смесей…………………..
2.2.Изготовление резиновых изделий…………………
Глава 3.Кремнийорганические высокомолекулярные соединения и их области получения………………………….
3.1.Стеклопласты…………………………………
3.2.Стеклотекстолиты……………………………..
3.3.Стекловолокниты………………………………
3.4.СВАМ………………………………………..
Заключение……………………………………………
Список литературы……………………………………..

введение

Ученые добились успеха и сегодня более одной трети резины, производимой в мире, изготовляется из синтетического каучука. Каучук и резина внести огромный вклад в технический прогресс последнего столетия. Вспомним хотя бы о минах и разнообразных изоляционных материалах, и нам станет ясна роль каучука в важнейших отраслях хозяйства. Каучук делает нашу жизнь удобнее.

Но вряд ли найдется другое природное сырье, добыча которого так была связана с кровью, произволом и безграничной колониальной эксплуатацией.

Сотни тысяч негров и индейцев погибли от болезней и непосильного труда на плантациях белых колонизаторов.

Их насмерть забивали бесчеловечные надсмотрщики – Европа и Америка все настоятельнее требовали каучука, и бесправные рабы-туземцы вынуждены были добывать его.

Когда испанские конквистадоры в XVI веке высадились в Южной Америке, их внимание привлекли мячи, которыми индейцы пользовались в спортивных играх. Эти мячи были сделаны из неизвестного в Испании упругого и пластичного вещества, получаемого индейцами из сока каких-то деревьев.

Индейцы находили ему и другое применение. Изготавливали из него водонепроницаемую обувь или обрабатывали им ткань, чтобы сделать ее непромокаемой. Слухи о странном веществе достигли Испании. Вначале это показалось интересным, но вскоре о диковинных игрушках просто забыли.

И суда отправились в опасные путешествия на за ними, а за золотом. Когда гораздо позже французский ученый Шарль де ля Кондамин напомнил об этом веществе, его сообщение восприняли как занятный курьез.

Однако этим деревом, которое росло в огромных девственных лесах Амазонки, в последующие годы продолжали интересоваться и наблюдали, как местные жители добывали его сок – каучук. Каучуки – это эластичные материалы, из которых методом вулканизации (нагреванием с серой) получают резину.

Из каучуков изготавливают покрышки и камеры для колес самолетов, автомобилей и велосипедов. Они применяются для электроизоляции, производства промышленных товаров и медицинских приборов.

Глава 1. Каучуки Читать далее: Природный каучук

… , формирующих качество каучука, резины их производных и, в частности, резинотехнических изделий весьма разнообразен, и зависит от конкретного вида материала или изделия.

Качественные характеристики каучука и резины формируются их видовым назначением и сферами их применения.

Основными характеристиками, которыми должен обладать каучук и резина, как его производное, являются: –   сохраняемость …

… вторичным продуктом целлюлозо-бумажной промышленности при получении талловой канифоли методом ректификации таллового масла /37/. 1.

5    Исследование таллового масла в качестве заменителя более дорогих технологических добавок На современном этапе рыночных отношений в России проблемы, связанные с разработкой научных основ производства и технологии оформления процессов, а также ассортимента …

… происхождения (канифоль), жирные кислоты (стеариновая, олеиновая) и другие. Прочность и нерастворимость резины в органических растворителях связаны с её строением.

Свойства резины определяются и типом исходного сырья.

Например, резина из натурального каучука характеризуется хорошей эластичностью, маслостойкостью, износостойкостью, в то же время мало устойчива к агрессивным средам; резина из …

… олеиновая) и другие. Прочность и нерастворимость резины в органических растворителях связаны с её строением. Свойства резины определяются и типом исходного сырья.

Например, резина из натурального каучука характеризуется хорошей эластичностью, маслостойкостью, износостойкостью, но в то же время мало устойчива к агрессивным средам; резина из каучука СКД имеет даже более высокую износостойкость, чем …

Источник: https://www.KazEdu.kz/referat/79327

Каучук — виды, получение и применение

Каучук и резина и их промышленное получение

В наше время почти любая область жизнедеятельности предполагает применение каучука. Это производство шин, кабеля, труб, строительный и отделочный материал, его используют в обувной, медицинской и других областях промышленности. Но что же такое «каучук», каковы виды каучука и как его получают?

Еще в конце 15 века индейцы Северной Америки из сока дерева гевеи научились получать каучук, который использовали при изготовлении обуви и других вещей. При надрезе коры гевеи происходило выделение капель молочно-белого сока – латекса. Этот сок индейцы назвали «слезы дерева», что звучит как кау-учу. Отсюда и название – каучук.

Открытие Америки Христофором Колумбом способствовало распространению чудесного материала в Европу, где путем проб и ошибок впервые получили резину.

С появлением автомобильной промышленности в 20 веке спрос на резину, а, значит, и на каучук стал расти. В то время стоимость изделий из каучука была очень высокой.

Это связано с тем, что в год с одного дерева гевеи можно получит всего 1—2 кг каучука, а на производство, например, шин требовалось в 50 больше.

Вскоре возникла нехватка, дефицит получаемого из сока гевеи каучука (натуральный каучук). Ученые занялись поиском решений этой проблемы. И, наконец, в 20-е годы 20 века русский учёный С.В. Лебедев получил первый синтетический каучук путем полимеризации 1,3-бутадиена (дивинила) на натриевом катализаторе.

Позже натриевый катализатор заменили катализатором Циглера-Натта (Al(C2H5)3∙TiCl4), что дало возможность получения полибутадиена и полиизопрена — синтетического каучука, обладающего нужными свойствами эластичности и прочности.

Синтетический каучук стал настолько популярен, что к концу 20 века почти полностью вытеснил натуральный каучук.

В настоящее время получают различные виды каучука. Все синтетические каучуки принято классифицировать на:

  • Каучуки общего назначения. Используются в массовом производстве таких изделий, как шины, транспортерные ленты, резиновая обувь и т.п., в которых реализуется такое свойство резины как эластичность:
  1. Бутадиеновый (СКД; СКБ)
  2. Изопреновый (СКИ)
  3. Хлоропреновый (наирит)
  4. Бутадиен-стирольный (CKC, CKMC)
  5. Этиленпропиленовый (СКЭП, СКЭПТ)
  6. Бутилкаучук (БК) и др.
  • Каучуки специального назначения.Применяеются в производстве изделий, обладающих не только эластичностью, но и стойкостью к воздействию различных агрессивных сред, тепло- и морозостойкостью и другими уникальными свойствами. Синтетических:
  1. Бутадиен-нитрильный (СКН)
  2. Полисуль­фидный (тикол)
  3. Кремнийорганический (CKT)
  4. Уретановый (СКУ)
  5. Фторосодержащий (СКФ)
  6. Винилпиридиновый, метил­винилпиридиновый (МБП) и др.

Сравнительная характеристика и область применения каучуков представлены в таблице, а получение некоторых из них описано в разделе Свойства и получение алкадиенов:

Виды и область применения каучуков:

Вулканизация каучука

Важное практическое значение имеет вулканизированный продукт – резина. Вулканизация каучука представляет собой специально обработанную смесь каучука и серы при воздействии температуры.

Линейные молекулы каучука в местах двойных связей сшиваются атомами серы, образуя дисульфидные мостики.. Такой продукт имеет трехмерную структуру и обладает повышенной прочностью, эластичностью, изностойкостью и другими полезными свойствами.

При массовой доле серы 1-5 % — продукт эластичный, мягкий; 30% — жесткий, твердый (эбонит).

Состав резины

  • Каучук натуральный или синтетический
  • Вулканизирующий агент – сера, тиурам , селен, перекиси, ионизирующая радиация.
  • Ускорители вулканизации — полисульфиды, оксиды свинца, магния
  • Антиоксиданты (вещества замедляющие скорость старения резины) — альдоль, неозон Д, парафин, воск)
  • Пластификаторы (вещества, улучшающие эластичность резины) — пара­фин, вазелин, стеариновую кислоту, битумы, дибутилфталат, рас­тительные масла. Их массовая доля составляет 8—30 % от массы каучука.
  • Наполнители активные и неактивные. Активные наполнители — кремнекислота, оксид цинка; неактивные наполнители — мел, тальк, барит
  • Регенерат (продукт переработки старых резиновых изделий и отходов резинового производства).
  • Красители — минеральные или органические красящие вещества.

Назначение будущего изделия, условий его эксплуатации, технических требований к нему и т.д. определяет выбор каучука и состава резиновой смеси.

Производство изделий из резины включает этапы смешения каучука с ингредиентами в смесителях, изготовления полуфабрикатов и их раскроя, сборки заготовок изделия при помощи сборочного оборудования и вулканизацию изделий в прессах, котлах, автоклавах и др.

Источник: http://zadachi-po-khimii.ru/organic-chemistry/kauchuk-vidy-poluchenie-i-primenenie.html

Глава 1. Каучуки

1.1. Природныйкаучук

Натуральный(природный) каучук – это высоко-молекулярныйнепредельный углеводород элементарногосостава (С5Н8)n, его относительнаямолекулярная масса колеблется в пределах150000-500000. Рурирование каучука приводитк предельному углеводороду состава(С5Н10)n, озонирование – козониду (С5Н8О3)n. Изпродуктов сухой перегонки каучука(М.Фарадей) был выделен изопрен:

nН2 nО3

(С5Н10)n ← (С5Н8)n → (С5Н8О3)n

↓t0

СН2=С-СН=СН2

|

СН3 изопрен

Р.Штаудингером(1931 г.) была предложена гипотеза обизопренаизном строении каучука,содержащего цепочки последовательносоединенных остатков изопрена. Тщательновыполненное озонирование подтвердилопредположение Р.Штаудингера – продуктыозонирования на 95% состоят из левулиновогоальдегида:

…-СН2-С=СН-СН2-СН2-С=СН-СН2-СН2-С=СН-СН2-…

| | |

СН3 СН3 СН3

Натуральный каучук

↓nО3

О – О О – О О – О

| | | | | |

…-СН2-С СН-СН2-СН2-С СН-СН2-СН2-С СН-СН2-…

| О | О | 0

СН3 СН3 СН3

Озонид натурального каучука

-nН2О2 ↓ nН2О

О О О О О О

║ ║ ║ ║ ║ ║

…-СН2 + СН-СН2-СН2 + СН-СН2-СН2 + СН-СН2-…

| | |

СН3 СН3 СН3

  • Реферат >>Промышленность, производствокаучуков. Производство синтетических каучуков состоит из получения каучукогенов (мономеров) и их … качество резины Состав факторов, формирующих качество каучука, резиныих производных … СКИ, СКИ-3 Шинная Высокомолекулярный полиизоперин П-118, …
  • Реферат >>Химия … другое. Виды резины и их применение. В зависимости от структуры резину делят на непористую … Для повышения твёрдости пористых резин в их состав вводят полистирольные смолы. … способа, схему получения продукта и 2 кг каучука. Победителем конкурса …
  • Реферат >>Химия … синтетического каучука 11 Резина 12 Вулканизация каучука 13 Применение резины в промышленных товарах 15 Виды резины и их применение … представить описание способа, схему получения продукта и 2 кг каучука. Победителем конкурса стала группа …
  • Реферат >>Химиякаучука. 4.Резина, её применение в промышленных товарах. 5.Виды резины и их применение. 6.Способ получения синтетического каучука по методу Лебедева. 7.Получение
  • Реферат >>Остальные работы … сроки службы максимальны для резин из промышленныхкаучуков. При термическом старении … пероксида и ТАИЦ. Значение ОДС резиныихкаучука вайтон GLT, содержащий по 4 … энергии электронного возбуждения Рассеивание полученной ими энергии электронного возбуждения …
  • Реферат >>Технология … Для получениярезины НК вулканизуют серой. Резины на … СКИ близок к на­туральному каучуку. выпускаются каучуки СКИ-3 и СКИ- … каучуков и резин следует отнести: 1) высокоэластический характер деформации каучуков; 2) зависимость деформаций от их
  • Реферат >>Химия … в России разрабатываются простые промышленные технологии получения жирных кислот и их эфиров путем переработки таллового … добавок в резины.// Каучук и резина.- 1996.- N6.- с. 10- Худовеков В.Д. Сульфатное мыло и талловое масло (получение и переработка …
  • Курсовая работа >>Промышленность, производство … пока не применяются при промышленномполучении изопреновых каучуков, хотя привлекают к … в кабельной для изготовления электроизоляционных резин, каучук СКИ-ЗВ … связывания металлов с целью перевода их в неактивное состояние. Полимеризат после …
  • Реферат >>Промышленность, производство … объема и массы резины. Их называют наполнителями или … . Наиболее широко применяемым типом этиленпропиленового каучука является тройной этиленпропиленовый каучук … Был разработан процесс получения полиуретанового каучука на основе простого …
  • Контрольная работа >>Промышленность, производствокаучуков. Производство синтетических каучуков состоит из получения каучукогенов (мономеров) и их … обработка … каучуков и резин следует отнести: 1) высокоэластический характер деформации каучуков; 2) зависимость деформаций от их

Источник: https://topref.ru/referat/13227.html

Синтетический каучук

Каучук и резина и их промышленное получение

Бурное развитие мировой автомобильной промышленности, авиации, военной техники привело к тому, что каучука добываемого в природе и предназначенного для производства резины, стало катастрофически не хватать. Плантации, разбросанные по всему миру стали не в состоянии обеспечить потребности промышленности. И тогда, во многом благодаря российским ученым на рынок вышел синтетический каучук.

История синтетического каучука

Введение

На самом деле, к промышленному производству синтетического сырья ученые и производственники шли порядка ста лет. Каучук был синтезирован во второй половине XIX века. Но технология производства, необходимое оборудование разработали только в ХХ веке. Все необходимое для производства синтетического каучука было представлено С.В. Лебедевым, российским ученым.

С тех пор, ученые – химики, производственники приложили немало сил для совершенствования этого сырья, разработки новых марок этого сырья и пр.

Виды синтетических каучуков

За время с момента организации промышленного производства синтетического каучука прошло почти сто лет. И специалисты в области органической химии за это время разработали и внедрили в производство большое количество видов этого сырья. Ниже приведен небольшой список.

Виды синтетического каучука

Виды синтетического каучука

Каучук бутадиеновый – основная область его применения это производство шин и камер. Параметры этой продукции выполненной из бутадиенового сырья существенно выше чем изделий этого класса но изготовленных из природного (натурального) качества. Кроме автомобильной промышленности бутадиеновый каучук применяют для производства химически стойкой резины и эбонита.

Бутилкаучук обладает уникальной способностью по удержанию воздуха. Именно это обеспечило его преимущества перед другими материалами при изготовлении покрышек, камер, диафрагм и пр.

На основании многократных испытаний, проводимых на заводах по производству покрышек и можно утверждать, что камеры, изготовленные из этого сорта синтетического каучука, удерживают давление воздуха в 8 – 10 раз больше, чем аналогичные изделия, выполненные из природного каучука.

Бутилкаучук отличается от природного еще и тем, что стойко воспринимает воздействие озона, не реагирует на действие к маслам разного типа (животному, растительному), но вместе с тем, этот материал необходимо оградить от контактов с минеральными маслами.

Если сравнивать параметры прочности, то натуральный продукт выигрывает с существенным отрывом.  Между тем, этот материал обладает низкой скоростью вулканизации, плохая адгезия к металлическим поверхностям. Быстрое нагревание при знакопеременных деформациях и в довершение, низкая эластичность при нормальной температуре и влажности.

Полихлоропреновый каучук или хлоропреновый, как иногда его называют, поставляется потребителю в виде светло-желтой массы. К основным свойствам этого материала можно отнести:

  • стойкость к воздействию огня;
  • адгезия к тканям, металлу и многим другим материалам;
  • невосприимчивость к действию озона, атмосферных явлений, в частности, к низким температурам.

Хлоропреновый каучук под воздействием растяжения кристаллизуется. Это его свойство, позволяет резинам, произведенным на его основе показывать высокие прочностные характеристики.

Предприятие химического производства каучука

Предприятия химической промышленности выпускают множество типов синтетических каучуков, причем некоторые из них превосходят натуральные. Широкое применение получили так называемые сополимерные соединения, получение при совместной реакции бутадиена и с ненасыщенными соединениями, например, такими как стирольный каучук СКС.

Ведя речь о сырье искусственного происхождения нельзя забывать и таком веществе как латекс синтетический. Это, по сути, раствор искусственного каучука и других полимерных веществ, например, полистирола.

Латексы синтетические применяют для изготовления клеев, водоэмульсионных красок. Их применяют и в строительстве при создании полимербетона.

Формула строения

Каждый вид синтетического каучука имеет свою химическую формулу

Молекулы изопрена  CH2=C(CH3)-CH=CH2  2-метилбутадиен-1,3;

бутадиеновый CH2=CH-CH=CH2 бутадиен-1,3;

дивиниловый CH2=CH-CH=CH2 бутадиен-1,3

Хлоропреновый CH2=C(Cl)-CH=CH2 2-хлорбутадиен-1,3

Бутадиен-стирольный состоит из молекул CH2=CH-CH=CH2 бутадиен-1,3 и C6H5- CH=CH2 стирол

Свойства и применение

Свойства синтетического каучука во многом превышают основные параметры натурального продукта. Так, его плотность меньше плотности воды и поэтому он спокойно плавает.

Химические свойства синтетического каучука позволяют ему не растворяться в воде, именно это позволяет его использовать для изготовления покрытий не проницаемых для воды. Это свойство позволяет их использовать для шитья одежды, спортивного инвентаря и пр. Такие вещества как бензин, бензол растворяют каучуки.

Это свойство позволяет их применять для производства клеевых составов. Каучук – это диэлектрик, которые широко применяют для создания изоляторов силового и слаботочного оборудования. Каучуки обладают гибкостью, прочностью, и повышенной стойкость к истиранию.

Кроме этого каучуки сохраняют свои свойства при циклических деформациях.

Применение синтетического каучука

Синтетические каучуки подразделяют на общие и специальные. К общим относят:

  • изопреновые;
  • бутадиен-стирольные и пр.

Их основные свойства – морозостойкость, высокая износостойкость. Кроме этого они обладают высокой масло бензо- и озоностойкостью.

Бутадиеновые каучуки(ПБ), иногда их называют дивиниловыми, относят к материалам общего назначения. Их применяют для изготовления проекторных и обкладочных резин для шин (каркаса, боковины и пр.).  Этот материал применяют для производства материалов, применяемых в кабельной промышленности, инструмента для абразивной обработки металла и других материалов, антифрикционных изделий.

Сырье на основании этилен — пропилена используют для создания ударопрочных полимеров, шин для велосипедов, тканей с водоотталкивающими свойствами, конвейерных лент для работы в термически сложных условиях.

Фторокремнийорганические каучуки (фторсиликоны или фторкаучки). Особенностью этих материалов – это сочетание стойкости к действию температуры, как низкой, так и высокой и различным агрессивным средам. Кроме того, сырье этого класса отличается стойкостью к истиранию, воздействию открытого пламени.

Он не пропускает газы. Его диэлектрические свойства позволяют его применять для создания изоляции, как для силовых кабелей, так и слаботочной аппаратуры. Это сырье применяют для производства материалов, применяемых для гумирования емкостей, предназначенных для транспортировки агрессивных веществ.

Еще одно важное свойство этих материалов – стойкость к радиации.

Отличия искусственного материала от природного заключаются в том, что при получении синтетического сырья применяют множество сополимеров и химических элементов, которые добавляют новые характеристики этому материалу.

Устойчивый спрос на синтетический каучук привел к появлению целой отрасли, которая задействована на производстве этого сырья. На рынке этого сырья отмечается постоянный рост спроса на эту продукцию.

Лидером по потреблению синтетического сырья можно считать самую динамично, развивающуюся экономику мира – китайскую.

Динамика рынка показывает, что после кризисных явлений 2008 – 2009 года, и падения спроса на эту продукцию в пределах 4%, на сегодня прирост сбыта составляет до 7%, от прошлогоднего уровня.

Среди стран, которые лидируют по производству синтетического сырья надо назвать КНР, РФ, США и ряд других.

Источник: https://stankiexpert.ru/spravochnik/materialovedenie/sinteticheskijj-kauchuk.html

Производство резины и резинотехнических изделий: оборудование и технология. Из чего делают резину

Каучук и резина и их промышленное получение

Резиновые материалы и комбинированные резинотехнические изделия невозможно заменить другой продукцией.

Уникальное сочетание характеристик и эксплуатационных качеств позволяет использовать такие материалы в сложных рабочих процессах, дополняя устройство машин, станков, приборов и строительных конструкций.

Современное производство резины заметно продвинулось технологически, что отразилось и на качестве выпускаемой продукции. Технологи стремятся повышать долговечность, прочность и стойкость изделий к воздействию сторонних факторов.

Из какого сырья делают резину?

Большая часть резиновых материалов получается в результате промышленной обработки синтетических и натуральных каучуковых смесей. Достигается эта обработка посредством сшивки каучуковых молекул химическими связями.

Последнее время используется порошкообразное сырье для производства резины, характеристики которого специально рассчитаны на образование литьевых форм. Это готовые композиции на базе жидкого каучука, из которых в том числе выпускают эбонитовые изделия.

Сам процесс вулканизации не обходится без специальных активаторов или агентов – это химические вещества, способствующие сохранению оптимальных рабочих качеств смеси. Обычно для данной задачи используют серу. Это компоненты, составляющие основу набора, требуемого для изготовления резины.

Но, в зависимости от требуемых эксплуатационных качеств и назначения продукта, технологи вводят производственные этапы, на которых структура изделия обогащается и модифицирующими элементами.

Добавки для модификации резиновых смесей

В процессе изготовления резиновая смесь может наполняться ускорителями, активаторами, агентами вулканизации, смягчителями и другими компонентами. Поэтому вопрос о том, из чего делают резину, в немалой степени определяется вспомогательными добавками. Например, для сохранения структуры материала используют регенераты.

С помощью данного наполнителя резиновый продукт может подвергаться вторичной вулканизации. Немалая часть модификаторов не оказывает влияния на конечные технико-эксплуатационные свойства, но играет существенную роль непосредственно в процессе изготовления.

Тот же процесс вулканизации корректируют ускорители и замедлители химических реакций.

Отдельную группу добавок представляют пластификаторы, то есть смягчители. Их используют для понижения температуры при вулканизации и диспергирования других ингредиентов состава.

И здесь может возникнуть другой вопрос – насколько добавки и сам каучук влияют на химическую безопасность формируемой смеси? То есть из чего делают резину с точки зрения экологической чистоты? Отчасти это действительно опасные для здоровья смеси, которые включают ту же серу, битумы и дибутилфталаты, стеариновые кислоты и т. д.

Но часть ингредиентов представляют натуральные вещества – природные смолы, тот же каучук, растительные масла и восковые компоненты. Другое дело, что в разных смесях соотношение вредной синтетики и натуральных ингредиентов может меняться.

Этапы процесса изготовления резиновых изделий

Промышленное изготовление резины начинается с процесса пластификации сырья, то есть каучука. На этом этапе обретается главное качество будущей резины – пластичность. Посредством механической и термической обработки каучук смягчается до определенной степени.

Из полученной основы в дальнейшем будет осуществлено производство резины, но перед этим пластифицированная смесь подвергается модификации рассмотренными выше добавками.

На этой стадии формируется резиновый состав, в который добавляют серу и другие активные компоненты для улучшения характеристик состава.

Важным этапом перед вулканизацией является и каландрование. По сути, это формование сырой каучуковой смеси, прошедшей обогащение добавками. Выбор способа каландрирования определяет конкретная технология.

Производство резины на этом этапе может предполагать также и выполнение экструзии.

Если обычное каландрование ставит целью создание простых резиновых форм, то экструзия позволяет выполнять сложные изделия в виде шлангов, кольцевых уплотнителей, протекторов для автомобильных шин и т. д.

Вулканизация как завершающий этап производства

В процессе вулканизации заготовка проходит финальную обработку, благодаря которой изделие получает достаточные для эксплуатации характеристики. Сущность операции заключается в воздействии давления и высокой температуры на модифицированную каучуковую смесь, заключенную в металлическую форму.

Сами формы устанавливаются в специальной автоклаве, подключенной к паровому нагревателю. В некоторых сферах производство резины может предусматривать и заливку горячей воды, которая стимулирует процесс распределения давления через текучую среду. Современные предприятия также стремятся к автоматизации этого этапа.

Появляются все новые пресс-формы, которые взаимодействуют с подающими пар и воду форсунками на основе компьютерных программ.

Как производятся резинотехнические изделия?

Это комбинированные изделия, которые получаются путем соединения тканевых материалов с каучуковой смесью.

В процессе изготовления резинотехнической продукции нередко используется паронит – гибридный материал, получаемый путем соединения термостойкой резины и неорганических наполнителей. Далее заготовка проходит обработку вальцеванием и вулканизацию.

Получают резинотехнические изделия и с помощью шприц-машин. В них на заготовки оказывается термическое воздействие, после чего осуществляется пропуск по профилирующей головке.

Оборудование для процессов изготовления резины

Полный производственный цикл осуществляет целая группа машин и агрегатов, выполняющих разные задачи. Один лишь процесс вулканизации обслуживают котлы, прессы, автоклавы, форматоры и другие устройства, обеспечивающие промежуточные операции.

Отдельный установки применяют для пластификации – типовая машина такого типа состоит из шипованного ротора и цилиндра. Вращение роторной части производится посредством ручного привода.

Не обходится производство резины без варочных камер и каландровых агрегатов, которые осуществляют раскатку каучуковых смесей и термическое воздействие.

Заключение

Процессы изготовления резиновых изделий во многом стандартизированы как в плане механической обработки, так и в части химического воздействия. Но даже при условии использования одинаковых производственных аппаратов характеристики получаемых изделий могут быть разными.

Это доказывает и резина отечественного производства, предлагающая разные наборы эксплуатационных свойств. Наибольшую долю резиновой продукции в российском сегменте промышленности занимают автомобильные шины.

И в этой нише особенно ярко проявляются способности технологов к гибкой модификации составов в соответствии с жесткими требованиями к конечной продукции.

Выбирая детали, обращайтесь в РТИ-Промэкспорт, Наши изделия – стабильность и надежность вашего оборудования!

Не забывайте ставить “палец вверх”и подписываться нанаш канал, чтобы получать больше полезной информации каждый день.

Источник: https://zen.yandex.ru/media/id/5c63be04ff409c00af5cb4f9/5ca6d7cac25ae800b25b4cb4

Vse-referaty
Добавить комментарий