Полупроводниковые фотоэлементы

Полупроводниковые фотоэлементы (стр. 1 из 2)

Полупроводниковые фотоэлементы

Доклад по физике

На тему: Полупроводниковые фотоэлементы

Выполнил:Гросс Д.А.

Проверила: Нюхалова Н.П.

Новосибирск 2010

Полупроводниковые фотоэлементы

Определение. Полупроводниковыми фотоэлементами называют приборы, принцип действия которых основан на фотогальваническом эффекте — явлении возникновения фото-э. д. с. в электрическом переходе при облучении его световым потоком. Фотоэлементы являются преобразователями энергии светового потока в электрическую энергию и используются как источники э.д.с.

для питания различных радиоэлектронных устройств, в приборах автоматики др.Устройство селенового и кремниевого фотоэлементов схематически показано на рис. 14-8. На массивную металлическую пластину толщиной 1—2 мм методом термического испарения в вакууме наносят слой р-селена (p—Se) и прогревают пластину при Т = 200 — 210° С.

На слой селена затем напыляют тонкую пленку кадмия (Cd), галлия (Ga) или индия (In). При последующей термической обработке на поверхности кристалла Se образуется тонкий слой (около 50 мкм) селенистого соединения напыленного металла, обладающего n-проводимостью. На границе образовавшегося селенида и р—Se формируется электронно-дырочный переход.

Тонкий напыленный слой металла полупрозрачен и служит вторым электродом, с которым соединяется кольцеобразный металлический контакт.Основой кремниевого фотоэлемента служит пластина п—Si толщиной 0,3—1 мм, на поверхности которой путем диффузии бора или алюминия создается слой р—Si толщиной 0,4—1 мкм.

На границе этого слоя с п—Si образуется р-п переход с толщиной запирающего слоя I w 0,05 мкм. Контакты со слоем р—Si создаются путем вакуумного напыления пленки титана, защищаемого затем тонкой пленкой серебра. Пленка напыляемого металла полупрозрачна. С тыльной стороны пластины вытравливается лунка, в которой осуществляется . контакт с пластиной п—Si.

Характеристики и параметры фотоэлементов. Энергетическая характеристика фотоэлемента показала на рис. 14-9, аПри = 0 зависимость = f (Ф) должна быть согласно (14-21) линейной, однако с увеличением светового потока характеристика отклоняется от линейного закона.

Это объясняется влиянием сопротивления перехода и сопротивления — объема полупроводника, показанных на эквивалентной схеме фотоэлемента (рис. 14-10), на которой процесс световой генерации пар зарядов представлен эквивалентным генератором тока.

Для этой схемы в соответствии с законом Кирхгофа можно записать:При малых значениях светового потока , следовательно, и световая характеристика почти линейна. С увеличением светового потока сопротивление перехода уменьшается и зависимость I == I (Ф) все больше отклоняется от линейной.Семейство вольт-амперных характеристик фотоэлемента показано на рис. 14-9, б.

Эти кривые представляют собой участок вольт-амперных характеристик облученного р-п перехода (см. рис. 14-7). При заданном световом потоке, например , характеристика отсекает на оси ординат отрезок, равный фототоку а на оси абсцисс — отрезок, равный величине фото – э. д. с. .

На семействе вольт-амперных характеристик может быть построена нагрузочная характеристика — прямая, идущая из начала координат, — угла наклона которой к оси абсцисс пропорционален сопротивлению .

Точка пересечения нагрузочной характеристики с вольт-амперной характеристикой определяет рабочую точку А, координаты которой соответствуют величинам тока I во внешней цепи и напряжения на зажимах резистора Площадь прямоугольника, ограниченного осями ординат и перпендикулярами, опущенными к ним из рабочей точки, пропорциональна мощности, выделяемой во внешней цепи.

Относительные спектральные характеристики основных типов промышленных фотоэлементов показаны на рис. 14-11, где нанесены также кривые энергии солнечного излучения, относительного числа фотонов в потоке солнечного света и видности глаза.

Частотная характеристика дает представление об инерционных свойствах фотоэлемента при облучении его световым потоком, модулированным по интенсивности по синусоидальному закон с частотой /. Как видно из рис. 14-12, с увеличением частот чувствительность фотоэлемента падает что определяется инерционными свойствами фотоэлемента, в основном постоянной времени перезаряда барьерной емкости р-п перехода.

На частотно характеристике отмечено значение граничной частоты , при которой чувствительность уменьшается в раз по сравнению ее значением при f = 0.Полупроводниковые фотоэлементы могут использоваться в качестве источников электрической энергии, а также в качестве фотоприемников.

В последнем случае наиболее важна их спектральная характеристика, а также такие параметры, как пороговый поток обнаружительная способность D, смысл которых рассматривался в § 14-4.

Для фотоэлементов, используемых как источники электроэнергии, наиболее важное значение имеют вольт -амперная характеристика и коэффициент полезного действия, значение которого определяет эффективность преобразования световой энергии в электрическую: Значение к. п. д. фотоэлемента зависит от ряда факторов.

Существенную роль играют световые потери, определяемые в первую очередь коэффициентом отражения. Отраженная часть световой энергии не участвует в процессе преобразования. К световым потерям относят также ту часть фотонов, которая при поглощении не создает пар носителей электрических зарядов (поглощение решеткой, свободными носителями зарядов, экситонное поглощение и др.).

Процесс преобразования сопровождается также энергетическими потерями. К их числу относятся процессы рекомбинации, образования пар зарядов на расстоянии от запирающего слоя, превышающем длину диффузии, потери в сопротивлении перехода, объема полупроводника и др.Коэффициент полезного действия фотоэлемента увеличивается с ростом светового потока и фотоэлектродвижущей силы .

Однако при больших значениях Ф с ростом концентрации свободных носителей возрастает вероятность их рекомбинации, а также снижается коэффициент собирания к. Кроме того, в результате разогрева прибора при больших Ф увеличивается ток , что также служит причиной снижения к. п. д.Рост фото – э.д.с. и напряжения ограничен высотой потенциального барьера перехода.

Увеличения напряжения можно достигнуть при использовании полупроводниковых материалов с широкой запрещенной зоной и высокой степенью легирования. В этом случае уровень Ферми приближается к дну зоны проводимости в n-полупроводнике и к потолку валентной зоны в p-полупроводнике, следовательно, -Теоретическое значение к. п. д. при приближается к 25%.

Задача выбора оптимального полупроводникового материала приобретает особое значение при разработке преобразователей солнечной энергии, характеризуемой весьма широким спектром. Этот вопрос мы более подробно рассмотрим ниже при обсуждении параметров фотоэлементов различных типов.Параметры фотоэлементов различных типов. Основными типами фотоэлементов, используемых в качестве фотогальванических приемников излучения, служат селеновые и сернистосеребряные фотоэлементы. Устройство селенового фотоэлемента было показано на рис. 14-8, а. Эти фотоэлементы используются в основном в кино – и фотоаппаратуре, так как их спектральная характеристика близка к кривой видности глаза (рис. 14-11, а).Интегральная чувствительность селеновых фотоэлементов . Фото-э.д.с. этих элементов не превышает 0,5—0,6 В. Значение граничной частоты составляет несколько сотен герц.В сернистосеребряных фотоэлементах электрический переход образуется между полупрозрачной пленкой золота и пленкой сернистого серебра, нанесенной на металлическую подложку. Эти фотоэлементы чувствительны к излучениям в длинноволновой части видимого спектра и в инфракрасной области.

Интегральная чувствительность этих приборов мА/лм. Эти фотоэлементы, как и селеновые, характеризуются низким значением к. п. д. (1—2%) и поэтому не используются как источники электроэнергии. Одна из причин столь низкого к. п. д.— малая диффузионная длина в поликристаллических полупроводниковых пленках.

В качестве фотоприемников для обнаружения и регистрации малых световых сигналов применяются фотогальванические элементы на основе монокристаллических полупроводников германия и кремния, а также полупроводниковых соединений: антимонида индия (InSb), арсенида индия (InAs) и др.

Электрические переходы в таких приборах получают путем сплавления (например, индия и n-германия) или методом локальной диффузии примесей.Для усиления малых электрических сигналов, получаемых при регистрации слабых световых потоков, желательно увеличить сопротивление нагрузки, включаемой во внешнюю цепь.

Однако увеличение сопротивления ограничено внутренним сопротивлением прибора , зависящим от сопротивления перехода при обратном включении. При энергетическая характеристика получается более линейной (см. рис. 14-9) и снижается постоянная времени перезаряда барьерной емкости.

С этой точки зрения кремниевые фотоэлементы предпочтительней германиевых, так как ширина запрещенной зоны кремния ( эВ) примерно в полтора раза больше, чем у германия, и, следовательно, меньше обратный ток. Германиевые приборы по этой причине используются при охлаждении да температуры жидкого азота (77 К).

Кремниевые приборы наиболее чувствительны к излучениям с длиной волны 0,8 мкм; длинноволновая граница этих приборов 1,1 мкм; удельная обнаружительная способность D* .Для работы в инфракрасной области спектра применяются фотогальванические приёмники из материалов с относительно узкой запрещенной зоной (InSb и InAs).

Параметры фотоприемника, изготовленного из антимонида индия, следующие: максимальная чувствительность соответствует излучению с длиной волны 5,5 мкм; удельная обнаружительная способность D* .

В качестве эффективных преобразователей солнечной энергии в электрическую — фотоисточников электрической энергии — применяются кремниевые элементы, изготавливаемые на основе монокристалла кремния, а также пленочные элементы на основе сульфида кадмия. Основные требования к солнечным элементам заключаются в следующем.

Прежде всего их спектральная характеристика должна наиболее полно соответствовать спектру излучения солнца. Спектральная характеристика полупроводникового материала во многом зависит от ширины запрещенной зоны -Как видно из рис. 14-11, б, спектральная характеристика кремния достаточна близка к спектру солнечного излучения.

В необходимой мере отвечает этим требованиям и спектральная характеристика сульфида кадмия.Второе важное требование — максимальный к. п. д. Как уже отмечалось, значение к. п. д. зависит от многих факторов.

Можно показать tl4], что при согласованной нагрузке () Отсюда следует, что материал для солнечной батареи должен обладать максимальной чувствительностью и высоким значением – Эти условия в совокупности с первым требованием к спектральной характеристике позволяют определить оптимальную ширину запрещенной зоны: .

Оптимальным с этой точки зрения является арсенид галлия (эВ), в достаточной степени удовлетворяют этим условиям кремний ( эВ) и сульфид кадмия ( эВ). Эти материалы в основном и используются при изготовлении солнечных батарей. Устройство кремниевого элемента было показано на рис. 14-8, б. Коэффициент полезного действия кремниевых солнечных батарей достигает 15—19%, а батарей на основе арсенида галлия 13%. Недостатками солнечных элементов этого типа (изготовленных на основе монокристаллов) являются невозможность получения большой рабочей поверхности (больше нескольких квадратных сантиметров), а также невысокое отношение мощности на выходе элемента к его массе — около 50 Вт/кг. Пленочные солнечные элементы на основе сульфида кадмия отличаются более высоким отношением мощности к массе (около 200 Вт/кг) и большей рабочей поверхностью, но более низким к. п. д. (около 8%).

Источник: https://mirznanii.com/a/323759/poluprovodnikovye-fotoelementy

Полупроводниковые фотоэлементы

Полупроводниковые фотоэлементы

Полупроводниковый фотоэлемент – это прибор с выпрямляющим переходом для непосредственного преобразования световой энергии в электрическую.

Рассмотрим p-n переход при освещении при прямом напряжении (рис. 6.6). Такой режим называется режимом генерации фотоэдс, т.к. происходит генерация носителей заряда. Электрическое поле их разделяет, в результате накопления электронов в n-области и дырок в р-области возникает дополнительная разность потенциалов – фотоэдс.

Фотоэлементы применяют в виде солнечных батарей. Обычно для этого используется Si. В p-Si p-n переход создается диффузией P или Sb.

Характеристики фотоэлементов:

– точка пересечения ВАХ с осью напряжения соответствует значениям фотоэдс или напряжениям холостого хода при разных освещенностях ( у Si это 0,5 – 0,55 В);

– точка пересечения с осью тока соответствует токам короткого замыкания ( у Si это 20 – 25 мА/см2);

световая характеристика – зависимость фотоэдс и тока короткого замыкания от светового потока или освещенности;

спектральная характеристика – зависимость тока короткого замыкания от длины волны.

Спектральная зависимость фотоэлементов аналогична спектральным характеристикам фотодиодов, изготовленных из того же полупроводника.

Максимум спектральной зависимости кремниевых фотоэлементов соответствует максимуму спектрального распределения энергии солнечного света. Поэтому именно фотоэлементы из Si используют для создания солнечных батарей;

коэффициент полезного действия – это отношение максимальной мощности, которую можно получить от фотоэлемента, к полной мощности светового потока, падающего на рабочую поверхность. К.п.д.

кремниевых фотоэлементов при преобразовании солнечной энергии не превышает 12 %.

Его можно повысить, если вместо Si использовать CdTe, GaAs или другие материалы с большей шириной запрещенной зоны, чем у Si, или используя фотоэлементы с гетеропереходами.

Фототранзисторы

Структура биполярного транзистора изображена на рис. 6.7. Транзистор включают по схеме с общим эмиттером. Базовый вывод не подключают (IБ = 0). Неосновные носители заряда (дырки в n-базе и электроны в р-коллекторе) втягиваются в коллекторный переход, проходят через него и создают фототок IФ .

Накопленные в базе неравновесные основные носители понижают высоту потенциальных барьеров эмиттерного и коллекторного переходов. Увеличивается инжекция дырок из эмиттера в базу. Возрастает и ток коллектора. Накопленный в базе дополнительный заряд неравновесных основных носителей обеспечивает усиление фототока.

Поэтому фототранзистор можно рассматривать как фотодиод, соединенный с транзистором: первый выдает фототок IФ базы, а второй обеспечивает усиление.

Рис. 6.7. Структура биполярного фототранзистора

При подключении вывода базы к внешней схеме часть неравновесных носителей уходит из базы, что ведет к понижению фототока.

Поэтому наибольшая чувствительность к облучению светом базовой области будет при включении по схеме с общим эмиттером и отключенной базой. В связи с этим в первых конструкциях биполярных фототранзисторов вывод базы отсутствовал.

В настоящее время его делают для электрического управления работой, для компенсации внешних воздействий.

Основные параметры фототранзисторов определяются аналогично параметрам фотодиодов. Например, параметры германиевого транзистора ФТ-1: Uраб = 3 В, Iт = 300 мкА, К = 170 – 500 мА/лм, τс = 200 мкс, светочувствительная площадка 2 мм2.

Датчики ИК-излучения

Для ИК-диапазона 0,8 – 12 мкм существует множество датчиков на основе PbSe, PbS, InAs, InSb, Ge, а также пироэлектрические детекторы. Важная область использования таких датчиков – обнаружение людей (например, при защите от взлома и др.). В спектральном составе ИК-излучения человеческого тела при температуре около 36 °С (рис. 6.8) максимум излучения соответствует длине волны 10 мкм.

Рис. 6.8. Распределение интенсивности ИК-излучения,

испускаемого лампой накаливания и человеческим телом

.

Для этого спектрального диапазона могут быть использованы только широкополосные ИК-датчики типа пироэлектрических детекторов. При резком воздействии ИК-излу-чения на пироэлектрический детектор, вызывающем его нагрев, напряжение (или ток в зависимости от схемы) изменяется лишь кратковременно, а затем спадает до нуля даже при сохранившемся действии облучения.

Природа пироэлектрического эффекта связана со спонтанной поляризацией Р, являющейся функцией температуры. Спонтанная поляризация – результат несовпадения центров положительных и отрицательных зарядов.

Обычно измеряется не сама спонтанная поляризация (она компенсируется полями свободных электрических зарядов, натекающих на поверхность изнутри и извне), а ее изменение ∆Р при быстром изменении температуры ∆Т.

Изменение поляризации с температурой определяется пироэлектрическим коэффициентом:

p = dP/dT. (6.6)

Если материал может свободно расширяться, что наблюдается в приемниках излучения, влияние расширения на поляризацию (вторичный пироэлектрический эффект) включается в величину Р.

Пироэлектрический эффект проявляется в материалах, кристаллическая решетка которых не обладает центральной симметрией, направление поляризации определяет некая полярная ось. Это явление наблюдается в кристаллах турмалина, CdS, CdSe, ZnO, ZnS.

Например, в турмалине при изменении температуры на 1 К возникает электрическое поле Е ≈ 400 В/см. Изменение поляризации в пироэлектриках может происходить и под действием механических напряжений (пьезоэлектрический эффект), но не наоборот – рис. 6.9. Важную группу пироэлектриков составляют сегнетоэлектрики.

Поляризация сегнетоэлектриков исчезает выше их точки Кюри. Характеристики пироэлектрических материалов приведены в табл. 6.3.

Метрологические параметры пироэлектрических приемников излучения: токовая чувствительность – 0,1 – 10 мкА/Вт; чувствительность по напряжению – до 105 В/Вт; постоянная времени (время нарастания сигнала) – 10-9 – 10-7 с; полоса пропускания – 103 Гц – 102 МГц.

Рис. 6.9. Классификация диэлектриков

Таблица 6.3

Характеристики пироэлектриков

Материал Пироэлектрический коэффициент при 25 °С р, Кл∙м-2∙К-1 Точка Кюри, °С
Триглицинсульфат (NH2CH2CO2H)3∙H2SO4 3∙10-4
Титанат бария BaTiO3 7∙10-4
Керамика циркониевый титанат свинца (3 – 17)∙10-4 215 – 365
Танталат лития 1,8∙10-4

Контрольные вопросы

1. Как можно объяснить спектральную характеристику фоторезистора?

2. Какими параметрами характеризуется фоторезистор?

3. Каковы отличия в свойствах фотодиодов и фоторезисторов?

4. На основе каких структур можно изготовить фотодиод и каковы основные отличия в свойствах фотодиодов на основе различных выпрямляющих электрических переходов?

5. Как в фотоэлементе происходит непосредственное преобразование световой энергии в электрическую?

6. Каков принцип действия биполярного фототранзистора?

7. Какова природа пироэлектрического эффекта?

8. Какие датчики используются для обнаружения человека?

9. На основе каких материалов можно изготовить фотодетекторы для ИК- области спектра, работающих в диапазоне «атмосферного окна» 8 – 14 мкм?

ДАТЧИКИ ВЛАЖНОСТИ

Знание влажности воздуха и других газов необходимо для контроля физико-химических и биологических процессов. Перечислим основные области использования датчиков влажности:

– бытовое кондиционирование воздуха. Значения относительной влажности, соответствующие ощущению комфорта, составляют от 35 до 70 %. При более низкой влажности возникает раздражение дыхательных путей, появляется статическое электричество; при очень высокой влажности происходит ослабление кожного дыхания и потоотделения. Кроме того при поддерживании высокой влажности возрастают энергозатраты;

– кондиционирование воздуха в промышленности. В зависимости от типа производства требования к влажности сильно отличаются: в текстильной промышленности влажность должна быть постоянной, так как ее изменения приводят к изменению натяжения волокна и влияют на работу станков.

В пищевой промышленности условия хранения различных продуктов требуют различной влажности: для одних продуктов желательна стабильная температура (немного выше 0 °С) при очень высокой влажности – 85 – 90 %, для других – высокая влажность может привести к появлению плесени, а низкая – к потери массы за счет испарения;

– обнаружение следов водяного пара. Многие технологические процессы требуют отсутствия следов водяного пара.

В микроэлектронике содержание влаги в корпусах интегральных схем не должно превышать 500 молекул воды на миллион молекул воздуха, на операциях сборки – не более 50 молекул, при эпитаксии кремния – менее одной.

Датчики относительной влажности для измерения десятитысячных долей процента требуются в металлургии, ядерной энергетике, теплотехнике, электроэнергетике.

Единицы измерения влажности

влаги измеряется в единицах абсолютной влажности, парциального давления паров воды, объемного влагосодержания, относительной влажности и температуры точки росы.

Абсолютная влажность измеряется в граммах воды на кубический метр.

Парциальное давление паров воды измеряется в гектопаскалях (104 Па).

Объемное влагосодержание (объемная концентрация паров воды) определяется как отношение объема паров воды к общему объему паровой смеси и выражается в объемных процентах или в единицах ppm (одна часть на миллион).

Относительная влажность измеряется в процентах и определяется как отношение парциального давления паров воды к давлению насыщенных паров при данной температуре.

Температура точки росы – это температура, при которой начинается конденсация паров воды, содержащихся в газе при его изобарическом охлаждении. Соотношение между различными единицами влажности при 21 °С приведено в таблице.

Методы измерения влажности

Методы измерения влаги в газах и жидкостях можно разделить на прямые и косвенные. Прямые методы основаны на непосредственном выделении влаги из анализируемой среды с последующим определением ее количества.

Косвенные методы основаны на измерении какой-либо физической величины, связанной с влагосодержанием среды.

Датчики влажности (или гигрометры) можно разбить на две большие группы: температурно-градиентные (психрометрические и конденсационные) и сорбционные (кулонометрические, сорбционно-импедансные и пьезосорбционные).

Соотношение между различными единицами влажности

при температуре 21 °С

Точка росы в градусах, Парциальное давление паров воды, Па Объемная концентрация паров, ppm Относительная влажность, %
К °С
-72 0,1902 1,880 0,00765
-68 0,3471 3,43 0,0140
-64 0,6171 6,10 0,0248
-60 1,0746 10,60 0,0433
-56 1,8354 18,20 0,0738
-52 3,0590 30,20 0,1260
-48 5,0270 49,70 0,2020
-44 8,1000 80,10 0,3250
-40 12,8480 127,00 0,5160
-36 20,0430 197,00 0,8040
-32 30,8290 305,00 1,2400
-28 46,6830 462,00 1,8800
-24 69,9580 692,00 2,8100
-20 103,210 1021,00 4,1400
-16 150,560 1489,00 6,0600
-12 217,060 2147,00 8,7500
-8 314,150 3061,00 12,8000
-4 436,240 4316,00 17,5000
609,010 6025,00 24,1000
798,000 7895,00 32,5000

Конденсационные датчики

Конденсационный метод (метод точки росы) основан на фиксации температуры конденсации паров воды в газовой фазе. Для работы датчика необходимо регулируемое охлаждение конденсирующей поверхности с точной фиксацией появления конденсата и одновременное измерение ее температуры.

К достоинствам метода относятся: измерение влажности в широком диапазоне концентраций паров воды, рабочий диапазон от -70 °С до +100 °С, градуировка датчика по температуре, а не по влажности (точность измерения температуры ±0,2 °С), возможность измерения влажности внутри корпусов интегральных схем.

Для охлаждения используются термоэлектрические холодильники (до -70 °С) и криогенные жидкости: жидкие азот ( 77 К), кислород (20 К), гелий (4 К). Для измерения температуры применяются термопары и терморезисторы. Для определения момента появления конденсата используют измерения оптических и электрических характеристик конденсата (поверхностного сопротивления или емкости).

Для индикации конденсата можно использовать пьезокварцевый резонатор, включенный в схему генератора: в момент появления конденсата добротность резонатора резко уменьшается, при этом изменяется частота генерации (кварцевый резонатор регистрирует изменение массы 10-10 – 10-8 г).

При оптической регистрации конденсата с помощью фотоприемников (фотодиодов, фоторезисторов, фототранзисторов) сравнивают интенсивности световых потоков, отраженных от чистой зеркальной поверхности и от поверхности, покрытой слоем конденсата.

При измерении влажности в корпусах ИС используется регистрация конденсата по изменению поверхностной проводимости или межэлектродной емкости. Простейший датчик поверхностно-конденсационного типа – два металлических электрода (гребенчатой формы), нанесенные на поверхность диэлектрика.

Структура датчика резистивно-емкостного типа изображена на рис. 7.1.

Рис. 7.1. Двухэлектродный датчик точки росы

резистивно-емкостного типа: 1, 2 – электроды;

3 – датчик температуры

Поверхностная проводимость такой структуры при приближении к точке росы увеличивается по закону, близкому к экспоненциальному. Образование на поверхности льда приводит к резкому уменьшению проводимости конденсата.

Основной недостаток конденсационного метода – зависимость показаний от степени загрязнения поверхности.

Психрометрические датчики

Психрометрические датчики используются для измерения относительной влажности газов (чаще всего воздуха) при температурах выше 0 °С. В основе их работы лежит зависимость разности показаний сухого и влажного термометров от влажности воздуха.

Температура влажного термометра tвл зависит от интенсивности испарения паров воды с увлажненной поверхности.

Между парциальным давлением паров воды РВ при температуре сухого термометра t и разностью температур сухого и влажного термометров (t – tвл) существует соотношение

РВ = – A ∙P ∙(t – tвл), (7.1)

где – давление насыщенного пара воды при температуре влажного термометра tвл; Р – общее давление; А – психрометрический коэффициент, зависящий от свойств газа, температуры и конструктивных особенностей датчика.

Точность показаний психрометра зависит от его конструкции (скорости воздушного потока, обтекающего влажный термометр, взаимного расположения термометров, температуры и чистоты воды для увлажнения фитиля и др.).

Чувствительность психрометра зависит только от чувствительности датчиков температуры, в качестве которых могут использоваться термопары, термометры сопротивления полупроводниковые терморезисторы и термодиоды.

Дифференциальная схема включения датчиков температуры обеспечивает высокую чувствительность и хорошую точность измерений даже вблизи насыщения, где использование большинства других датчиков влажности ограничено.

Простота и дешевизна психрометров обеспечивает их широкое применение в бытовой технике и в системах кондиционирования воздуха.

Однако им присущи и такие недостатки, как необходимость мокрого термометра, зависимость показаний от суммарного давления газа, низкотемпературный (0 °С) и высокотемпературный пределы измерений.

Психрометры, не рассчитанные на непрерывную подачу воды для смачивания фитиля, работают при температурах до 40 °С, при более высоких температурах вода для смачивания фитиля может испаряться быстрее, чем установится равновесие. Психрометры с непрерывной подачей воды, компенсирующей испарение.

Используются до температур 90 – 100 °С, специальные психрометры для промышленных сушилен могут работать до температур 200 – 250 °С, при этом температура влажного термометра составляет 20 – 75 °С. Отмеченные недостатки приводят к тому, что в общем объеме выпуска датчиков влажности доля психрометров постоянно снижается.



Источник: https://infopedia.su/10xb96e.html

Применение фотоэффекта – Класс!ная физика

Полупроводниковые фотоэлементы

«Физика – 11 класс»

Открытие фотоэффекта имело очень большое значение для более глубокого понимания природы света.
Но ценность науки состоит не только в том, что она выясняет сложное и многообразное строение окружающего нас мира, но и в том, что она дает нам в руки средства, используя которые можно совершенствовать производство, улучшать условия материальной и культурной жизни общества.

С помощью фотоэффекта «заговорило» кино, стала возможной передача движущихся изображений (телевидение). Применение фотоэлектронных приборов позволило создать станки, которые без участия человека изготовляют детали по заданным чертежам.

Основанные на фотоэффекте приборы контролируют размеры изделий лучше человека, вовремя включают и выключают маяки и уличное освещение и т. п.

Все это оказалось возможным благодаря изобретению особых устройств — фотоэлементов, в которых энергия света управляет энергией электрического тока или преобразуется в нее.

Вакуумные фотоэлементы

Современный вакуумный фотоэлемент представляет собой стеклянную колбу, часть внутренней поверхности которой покрыта тонким слоем металла с малой работой выхода.
Это катод 1. Через прозрачное окошко свет проникает внутрь колбы.

В ее центре расположена проволочная петля или диск — анод 2, который служит для улавливания фотоэлектронов. Анод присоединяют к положительному полюсу батареи.

Фотоэлементы реагируют на видимое излучение и даже на инфракрасные лучи.

При попадании света на катод фотоэлемента в цепи возникает электрический ток, который включает или выключает реле.
Комбинация фотоэлемента с реле позволяет конструировать множество различных «видящих» автоматов. Одним из них является автомат в метро. Он срабатывает (выдвигает перегородку) при пересечении светового пучка, если предварительно не пропущена карточка.

Подобные автоматы могут предотвращать аварии.
На заводе фотоэлемент почти мгновенно останавливает мощный пресс, если рука человека оказывается в опасной зоне.

С помощью фотоэлементов воспроизводится звук, записанный на кинопленке.

Полупроводниковые фотоэлементы

Кроме рассмотренного в этой главе фотоэффекта, называемого более полно внешним фотоэффектом, широко применяется и так называемый внутренний фотоэффект в полупроводниках.
На этом явлении основано устройство фоторезисторов — приборов, сопротивление которых зависит от освещенности.

Кроме того, сконструированы полупроводниковые фотоэлементы, создающие ЭДС и непосредственно преобразующие энергию излучения в энергию электрического тока.
ЭДС, называемая в данном случае фотоЭДС, возникает в области р—n-перехода двух полупроводников при облучении этой области светом.

Под действием света образуются пары электрон — дырка. В области р—n-перехода существует электрическое поле. Это поле заставляет неосновные носители полупроводников перемещаться через контакт.

Дырки из полупроводника n-типа перемещаются в полупроводник p-типа, а электроны из полупроводника р-типа — в область n-типа, что приводит к накоплению основных носителей в полупроводниках n- и p-типов. В результате потенциал полупроводника р-типа увеличивается, а n-типа уменьшается.

Это происходит до тех пор, пока ток неосновных носителей через р—n-переход не сравняется с током основных носителей через этот же переход.

Между полупроводниками устанавливается разность потенциалов, равная фотоЭДС.

Если замкнуть цепь через внешнюю нагрузку, то в цепи пойдет ток, определяемый разностью токов неосновных и основных носителей через р—n-переход. Сила тока зависит от интенсивности падающего света и сопротивления нагрузки R. Фотоэлементы с р—n-переходом создают ЭДС порядка 1—2 В.

Их выходная мощность достигает сотен ватт при коэффициенте полезного действия до 20%.

Фотоэлементы малой мощности используются, например, в фотоэкспонометрах. Особенно широко применяются полупроводниковые фотоэлементы при изготовлении солнечных батарей, устанавливаемых на космических кораблях. К сожалению, пока такие батареи довольно дороги.

Широко применяются вакуумные и полупроводниковые фотоэлементы, которые создают фотоЭДС.

Источник: «Физика – 11 класс», учебник Мякишев, Буховцев, Чаругин

Следующая страница «Давление света. Химическое действие света»
Назад в раздел «Физика – 11 класс, учебник Мякишев, Буховцев, Чаругин»

Световые кванты. Физика, учебник для 11 класса – Класс!ная физика

Фотоэффект — Теория фотоэффекта — Фотоны — Применение фотоэффекта — Давление света. Химическое действие света — Краткие итоги главы

Источник: http://class-fizika.ru/11_65.html

18-3. Полупроводниковые фотоэлементы

Полупроводниковые фотоэлементы

Макеты страниц

Полупроводниковым фотоэлементом называется полупроводниковый прибор, в котором под действием падающего на него излучения возникает э. д. с., называемая фото-э. д. с. Работа фотоэлемента с запирающим слоем, или, что то же, вентильного фотоэлемента, основана на использовании запирающего слоя между полупроводниками с различными проводимостями ().

Поглощение лучистой энергии при освещении поверхности фотоэлемента вблизи -перехода вызывает ионизацию атомов кристалла и образование новых пар свободных носителей заряда электронов и дырок.

Образующиеся электроны под действием электрического поля -перехода уходят в слой , дырки — в слой . Это приводит к избытку дырок в слое и электронов в слое . Возникающая разность потенциалов (фото-э. д. с.) между слоями вызывает ток во внешней цепи от электрода к электроду .

Величина этого тока зависит от количества электронов и дырок, а следовательно, от светового потока.

Схема устройства германиевого, фотоэлемента с запирающим слоем показана на рис. 18-10.

Рис. 18-10. Германиевый фотоэлемент и условный знак полупроводникового фотоэлемента.

Рис. 18-11. Кремниевый фотоэлемент.

Он состоит из пластинки германия 1 с -проводимостью, в которую вплавлен индий 2.

В процессе изготовления в пластинке германия, расположенной над индием, образуется область с -проводимостью, на границе которой с германием и создается -переход.

Слой германия, расположенный над индием, настолько тонок, что световые лучи свободна проникают в гзону -перехода. Корпус фотоэлемента из органического стекла залит изолирующим компаундом 3, через который проходят два проводниковых вывода.

Кремниевый фотоэлемент (рис. 18-11) состоит из пластины кремния с примесью, имеющей -проводимость.

На поверхность пластины путем диффузии в вакууме вводят примесь бора, образуя слой с -проводимостью толщиной порядка 2 мкм.

Батареи кремниевых элементов называются солнечными батареями и применяются для непосредственного преобразования солнечной энергии в электрическую, имея к. п. д. около 11%.

Они, в частности, применяются на искусственных спутниках Земли для питания их радиостанций.

Фотоэлементы с запирающим слоем имеют высокую чувствительность (до ). Преимущество их перед другими фотоэлементами заключается в том, что они не требуют источника питания. Фотоэлементы нашли широкое применение в различных областях электроники, автоматики, измерительной техники и т. д.

Фотодиодом называется полупроводниковый фотоэлемент с двумя электродами, разделенными -переходом.

Рис. 18-12. Фотодиод: а — схема; б — условное обозначение; в — схема соединения при работе его в генераторном режиме.

Фотодиоды могут работать как с внешним источником питания — фотопреобразовательный режим, так и без внешнего источника — генераторный режим.

На рис. 18-12 показано устройство диода, его условное обозначение и схема включения в генераторном режиме.

При освещении фотодиода создаются дополнительные пары электрон — дырка, часть которых, перемещаясь, достигают –перехода. Здесь под действием электрического поля – -перехода дырки перехйдят в -область, а электроны остаются в -области, так как они не могут преодолеть потенциального барьеру.

Происходит накопление дырок в ласти и электронов в -области, при этом между электродами устанавливается некоторая разность потенциалов, представляющая собой фото-э. д. с., которая может достигнуть значения 1 В. При наличии сопротивления нагрузки через лего будет протекать ток (рис. 18-12, в).

В фогопреобразовательном режиме (рис. 18-13) напряжение источника питания приложено в обратном направлении. При отсутствии освещения через фотодиод проходит небольшой обратный ток — темновой ток.

При освещении электронной области фотодиода возникают пары электрон — дырка. Дырки, доходят до -перехода, под действием его электрического поля переходят в -область. Следовательно, свет вызывает рост, тока неосновных носителей из -области в -область, ток в цепи возрастает, т. е. появляется световой ток.

Изменение тока в цепи, зависящее от освещенности диода, вызывает в нагрузке падение напряжения, пропорциональное величине светового потока, действующего на фотодиод. Фотодиод, работающий в режиме фотопреобразователя, подобен фоторезистору, обладающему большей интегральной чувствительностью.

Например, у кремниевых диодов типа она имеет значение а у германиевых типа Темповой ток первого из указанных фотодиодов составляет 1—3 мкА, а второго 10 мкА.

Рис. 18-13. Схема соединения фотодиода при работе его в фотопреобразовательном режиме.

Источник: http://scask.ru/c_book_oet.php?id=208

Фотоэлементы. Виды и устройство. Работа и применение

Полупроводниковые фотоэлементы

Сегодня в промышленности работают десятки тысяч автоматов, оснащенных электронным зрением. Электронным глазом у них служат фотоэлементы. В основе работы этих приборов лежит фотоэффект. История открытия этого явления началась 100 лет назад.

Эффекты фотоэлементов можно разделить на несколько видов, которые зависят от свойств и производимых функций:

  • Внешний фотоэффект. Его другое название – фотоэлектронная эмиссия. Электроны, вылетающие за границы вещества при возникновении внешнего фотоэффекта, называются фотоэлектронами.

    Образующийся фотоэлектронами при этом электрический ток, при упорядоченном движении по внешнему электрическому полю, называется фототоком.

  • Внутренний фотоэффект. Он влияет на фотопроводимость материала.

    Этот эффект появляется при перераспределении электронов по диэлектрикам и полупроводникам, в зависимости от их агрегатного (жидкого или твердого) и энергетического состояния. Перераспределяющее явление возникает под действием светового потока.

    Только при таком действии повышается электропроводимость вещества, то есть, возникает эффект фотопроводности.

  • Вентильный фотоэффект. Таким эффектом называется переход фотоэлектронов из собственных тел в другие тела (твердые полупроводники) или электролиты (жидкие).

На основе внешнего фотоэффекта работают вакуумные элементы. Они производятся в виде колб из стекла. Часть их внутренней поверхности покрывается тончайшим слоем напыления металла. Такая малая толщина позволяет получить незначительный рабочий ток.  Окошко в колбе имеет прозрачность, и пропускает свет вовнутрь.

Расположенный внутри колбы анод из диска, либо проволочной петли, улавливает фотоэлектроны. При соединении анода с положительным выводом питания, цепь замкнется, и по ней будет протекать электрический ток. То есть, вакуумные элементы могут коммутировать реле.

Путем комбинации реле и фотоэлементов можно образовать разные автоматы с электронным зрением, например, на входе в метро. Внешний фотоэффект заложен во многих технологических процессах в промышленности, и является важным физическим открытием, залогом успешного развития автоматики на производстве.

Устройство и принцип действия

Хорошо очищенная цинковая пластина, медная сетка, чувствительный гальванометр включены в электрическую цепь батареи.

При освещении пластины ультрафиолетовыми лучами в цепи возникает электрический ток. Значит, свет выбивает электроны из металла. Это явление и называют фотоэффектом.

Поставим на пути лучей стекло, задерживающее ультрафиолетовые лучи. Ток в цепи прекращается.

Вакуумный баллон. Часть его внутренней поверхности покрыта тонким слоем щелочного металла. Это катод. Анодом служит металлическое кольцо.

Подадим напряжение. Тока в цепи нет. Теперь осветим элемент, появляется ток. После снятия напряжения ток уменьшается, но не до нуля. По мере увеличения напряжения, фототок возрастает и достигает насыщения.

При отсутствии напряжения ток в цепи есть. Для прекращения фототока необходимо подать на анод отрицательный задерживающий потенциал

Электрическое поле тормозит фотоэлектроны и возвращает их на катод. По мере приближения источника света величина светового потока увеличивается. Возрастает и фототок насыщения. Величина фототока насыщения прямо пропорциональна световому потоку. Это первый закон фотоэффекта.

Выясним, какую роль в фотоэффекте играет длина волны света. Установим синий светофильтр. При этом ток есть. С зеленым светофильтром ток уменьшается. С желтым светофильтром тока нет. Для каждого вещества есть определенная пороговая частота, ниже которой фотоэффекта нет. Это длинноволновая граница фотоэффекта.

Если увеличивать световой поток на более низких частотах, фотоэффекта не произойдет. Как объяснить это явление? Ученые изучили распределение энергии в спектре излучения нагретых тел.

Ученые также пришли к выводу, что свет излучается, распространяется и поглощается порциями – квантами энергии, фотонами. Валентные электроны в металле свободны. При поглощении фотона энергия идет на работу выхода электрона и его кинетическую энергию. Уравнение Эйнштейна раскрывает смысл 2-го закона фотоэффекта.

Кинетическая энергия фотоэлектрона определяется частотой света. При взаимодействии света с металлом мы наблюдали внешний фотоэффект. Схема опыта ученых послужила прототипом приборов на внешнем фотоэффекте.

Светочувствительный слой вещества и кольцевой анод находятся в вакуумной или газонаполненной колбе. По этому принципу устроены фотоэлементы, выпускаемые промышленностью.

Существует большая группа элементов, свойства которых меняются под воздействием света. Это полупроводники. На их основе созданы фоточувствительные приборы с так называемым внутренним фотоэффектом.

Фоторезистор

Возьмем проволочный резистор из полупроводника. Включим его в электрическую цепь. Под действием света происходят очень сильные изменения электрического сопротивления, и ток возрастает. Изменение проводимости не зависит от направления тока в фоторезисторе. Как возникает внутренний фотоэффект?

Рассмотрим элемент германий. Он четырехвалентный. На схеме изображена устойчивая структура полупроводника. Атомы прочно связаны ковалентной связью.

Если энергия кванта света достаточна, чтобы разорвать связь электрона с атомом, он становится свободным, и блуждает по кристаллу. На его месте возникает так называемая дырка.

Это положительный заряд, равный заряду электрона. Дырка может быть снова занята электроном.

Приложим разность потенциалов. Возникнет направленное движение электронов и дырок – электрический ток. Так устроен фоторезистор.

При воздействии света появляются носители, резко увеличивается проводимость, и возрастает ток в цепи.

Проводимость очень чистых полупроводников мала. Ее можно увеличить, если добавить примесь другого элемента. Добавим, например, атомы мышьяка. Они имеют большую валентность. При этом часть электронов оказывается свободной.

Благодаря ним и увеличивается проводимость. Эта примесь дает материал n-типа. У индия валентность меньше. Он захватывает электроны кремния, увеличивая число дырок. Проводимость становится дырочной.

Эта примесь дает материал р-типа.

Соединим два полупроводника n-типа и р-типа. На границе произойдет перераспределение зарядов. Дырки входят в р-область, а электроны в n-область до тех пор, пока на границе не возникнет электрическое поле, которое препятствует дальнейшему перераспределению. Так возникает двойной слой заряда, который называют р-n переходом.

Благодаря фотоэффекту при воздействии света появляются электроны и дырки. Возникает разность потенциалов.

Если цепь замкнуть, появится электрический ток. Этот эффект можно использовать для прямого преобразования световой энергии в электрическую. По этому принципу работают преобразователи световой энергии в электрическую, в экспонометрах, люксметрах, солнечных батареях.

Фотодиод

Простой фотодиод – это обычный полупроводниковый диод с переходом р-n, на который может воздействовать световой поток. В итоге материал меняет свои свойства, и дает возможность исполнять разные функции в цепи электрического тока. При отсутствии света диод имеет обычные свойства.

Комбинируя структуры, можно получить фототранзистор. Световой луч управляет его работой.

Вот некоторые области использования фотоэлементов в нашей жизни:

  • По этой схеме фотоэлементы могут управлять работой двигателей, станков, целых систем. Они прочно вошли в нашу жизнь.
  • Фотореле пропускает нас в метро. Электронный глаз следит за движением нити в текстильном производстве. Миниатюрные фотоэлементы зарегистрируют ее обрыв и остановят станок.
  • Их используют для измерения площади заготовок сложной формы.

    В считанные секунды определяется площадь лекала. Фотореле строго следит за раскроем кожи, ткани, и обеспечивает безопасность работы на прессе.

  • На станке для плазменной резки металла фотоэлементы также управляют его работой. Они считывают информацию с перфоленты, и задают режимы работы станка.
  • В типографии они считают бумажные листы, следят за их правильной укладкой и резкой.

    Ведут постоянный контроль за циклом работы станка, обеспечивая безопасность работы резчика бумаги.

  • На почтамте фотоэлементы позволили автоматизировать трудоемкие операции по обработке писем и сортировки их по адресам. Электронный глаз внимательно следит за тем, чтобы штемпель точно попал на марку.

    Фотоэлектронная система считывает индекс, обозначенный на конверте, и направляет письмо в нужную ячейку.

  • В ювелирном производстве фотоэлементы стали контролерами качества обработки драгоценных камней. Фотоэлектронный глаз представляет собой матрицу, состоящую из нескольких тысяч отдельных фотоэлементов.
  • Звук в кино записывается на звуковую дорожку.

    Фотоэлемент его расшифровывает, и управляет работой звуковых динамиков. Изображение на фотопленке и в глазу человека возникает благодаря фотоэффекту.

  • Роботы-автоматы выполняют технологические операции, за которыми не может следить человек. В промышленности робот движется, ориентируясь по белой линии на полу, благодаря системе, оснащенной фотоэлементами.

  • Прогресс науки и техники в самых разных областях народного хозяйства во многом стал возможен благодаря широкому использованию фотоэлементов.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/fotoelementy/

Vse-referaty
Добавить комментарий