Применение магнитов

������������� ���������� �������� � �������������� � �����������������

Применение магнитов

������� ���������� ������� ������� �������� ���������� �� ������ �������� ������������ �����.

����� �� �� �������� �� �����������, ������ ����������� � ����� �������� � ��������� ��������������� � � ������������ �����������, ���� ����������� ������������, ����� ���������� ���������� ������.

������������� � �������, ���������� � ��������� ����, ��������� ������� � �������������, ������ ������������ ������� � ����� ����� ��������� ���������� �������.

��� ����������� � ����������� ������� � � ������������� ����������, � ��������� ������������ � � ������������� ��������������, � ���������� ����������� ����, � ������������ ��������, � ������� ��������������� � �����-����� ��� ���: ������������, ���������������, ����������, ������������ � �. �. – �� ���� �� ���� �������� �� ��������� ��� ������������� ���������� ��������.

���������� ������� � ����������� ���������� �������� ����� ���� �� ����������� ����������, ��� �� �����, ��������� ������ ������ ������ ������� ����� ���������� ���������� ���������� �������� � �������������� � �����������������.

���������������� � ����������

�� ������ ������� � ������ ������ ��������, ��� ���������� � ����� � �������������� ��������������� � ��������� ����� ����������� �������. �� ���� �������� �������� ������ ������ ���������� � �����������. �� ��������� ������ ������ �� ����. ���������� � ����� ������� ������ ���������� ����� ����� � ������.

���������� � ��������� ������������ ����� ����� � �������������� �� ����� ����������� ���������, � ������ � ��� ��������� ��������������.

�������������� ������, ����������� ����� ������� ������ �������� ���������� ���� �������, �� ��������� ����� �������, �������� � ���� �����������, ������� ��������� ����� � ���������� ���������.

����������� ������� ����������� �������� �������� �����, � �������� ������� �������� ������ ������� ���������.

� ������������������ ���������� ������� ����� ����� ���� ����������. ���������� ���������� ��� �������� ��������, ��������, � ���� �� ���������� �����������.

�� ������� ���������� �� ���������� ������������� ������������ �������, ������� � �������� ������ ������� ������������ ���������� ��������� ����� ���������� (��� ��������� ������� �� ������� �����) ���������� ��������, ������������ �� ������. ��������� ������ ���������������� ��������, ������������ ��������� ���������� ������������ ������� ���������� � ���� ����������� ���.

����� ���������� ������������ �� ������ � ��������, �� � � ��������� ������������ �������, ��� ������ ������� ����������� �� ������ ����������� ���������� �������. ����������� ������� � ��������� � ����������� �������� ��������� � ������� ������������ ���������.

�������������������� ������� � ���������

� ������������ ������������ ��������� �������������� ���������� ���� ��������� � ���� ����������� �������. ��� �����������, ������ ����� ����, ��������������� � ��������� ����� ����������� �������, � ���� ���������.

��� ������ ��� � ��� ���� ������� �������� �����, ��������� ��������� ������ ��������� ����� �������, ����������� �� ���������� ���������� ������� ������ ����� �� ������� ���������� ���� ����������� �������. �� ����, ����� ������� � ��� ���������������� ����������� ���� ��������� �������� � �������� �� �������.

��� ��������� ������ ����� ��������� ������������� � ����� �������������� ������������� �������. ����� ��������������� ������ ��������������� � ��������� ����������� ��������, ������� ��������� � ������ ����� �������� ����������� �������.

���������� ������� � �������� ��������� ���������� ��������� ���������� �������, ������� ��������� ��-�� ��������� ��������, ����������� ��� ����������� ���� ����� �������. ����� �������, ���������� ������� ����������� ��������������� �������� �������������� ��������� �������� � ������, �, ��������������, ���� � ������� �������. ��� ����� ���������� ����� ������������� ���������� ��������.

���������� ������� � ������� ��������������

��������� �� ����� ����� ���� �������������. � � ��� ���� ����� ��� ���������� �������. ��� ��������� ���������������� ���� ���-���������, � ������������� ���������� ���������. ������ ���������� ��������� �������� � ������� �� ������ � �����, � � �������� �������� �� ���������� ������ ������������, ����� ���������� �� ����� ������������ ���������� �����.

��� ����������� ���������� ����������, ������ � ����� ��������� ������ ���������� ����������� ��������� ���������� �������. ��������� ���� ���������� �������� ���������� ���������� �������� ���������� ���, ��� ���������� ������ ����� �� ����������, ������� ���������� ����������, ������� � ���� ������� ���������� ���������������� ����� ���-��������� ��� ��������� ����.

����� ������� �������� ����� ����� �����������������, �� �������� � �������� ������ � ���������� ���������� ������ ����� ����� ����������� � ����������������. ����� �� ������ �������� ���������� ������. ������ �������� �����, � ��������� ���� ������������� ���������� ����������� �������, ������������ ������� � �����, ��������� � ��������.

����� �� ������� ������� �������� ���, ��������� ���� ����� ����, � ����������� �� ��� ��������, ����������� ������� �� ����������� ������� ������� ��� ������, � �� ��� ���� �������, ����� ������� ������� �������� � ��������, ������ � ������� ���������. ���� ��������� ��������� ���������������.

��������� ���������� � �����������������

� ����� ��������� ������������� �����������������, � ��������� ������� ��� ����������� ��������� ������������ ���������� ��������������. ��� ������������������� ���������������, ���������� �� �������� ������������ ���������� ������� � ����� ������������ ������� ������������ ��������, ���������� ������������� ������������ ��������������.

��� ��������, � �������� �������� ATZ ����������� ������������ ���������� ������� �� 20 ���, ��������� 250 ���, ������ �������� ������������� ���������� �������� 100 ��-�/��.

��� ���� �������� � 100 ��, ��� �������� �� ��������� 6000 ��/���, �������������� ����������� ��������� 1,5 ����� ����� ���� ������������ ����������.

� ����� ������ ��������� ��� ����������, �������, �� ������ ���������� ��������.

Источник: http://ElectricalSchool.info/main/osnovy/1885-ispolzovanie-postojannykh-magnitov-v.html

3 разных типа магнитов и их применение

Применение магнитов

Магниты – это материалы, которые генерируют поле, которое притягивает или отталкивает некоторые другие материалы (например, железо и никель) с определенного расстояния. Это невидимое поле, известное как магнитное поле, отвечает за ключевые свойства магнита.

Древние люди использовали магниты по крайней мере с 500 г. до н.э., и самые ранние известные описания таких материалов и их характеристики происходят из Китая, Индии и Греции около 25 веков назад. Однако искусственные магниты были созданы еще в 1980-х годах.

Очевидно, что не все магниты состоят из одних и тех же веществ, и поэтому их можно разделить на разные классы в зависимости от их состава и источника магнетизма. Ниже приведен подробный список трех основных типов магнитов с указанием их свойств, прочности, а также промышленного и непромышленного применения.

1. Постоянные магниты

После намагничивания постоянные магниты могут сохранять магнетизм в течение продолжительного времени. Они сделаны из материалов, которые могут намагничиваться и создают собственное постоянное магнитное поле.
Обычно постоянные магниты изготавливаются из четырех различных типов материалов:

I) Ферритовые магниты

Стек ферритовых магнитов | Изображение предоставлено: Викимедиа

Ферритовые магниты (также называемые керамическими магнитами) являются электроизоляционными. Они темно-серого цвета и выглядят как карандашный грифель.

Ферриты обычно представляют собой ферромагнитные керамические соединения, получаемые путем смешивания больших количеств оксида железа с металлическими элементами, такими как марганец, барий, цинк и никель. Некоторые ферриты имеют кристаллическую структуру, например ферриты стронция и бария.

Они довольно популярны благодаря своей природе: они не подвержены коррозии и, следовательно, используются для продления жизненного цикла многих продуктов. Ферритовые магниты могут использоваться в чрезвычайно жарких условиях (до 300 градусов Цельсия), и стоимость изготовления таких магнитов также низкая, особенно если они производятся в больших объемах.

Они могут быть далее подразделены на «твердые», «полужесткие» или «мягкие» ферриты, в зависимости от их магнитных свойств.

Поскольку твердые ферриты трудно размагничивать, они обладают высокой коэрцитивной силой. Они используются для изготовления магнитов, например небольших электродвигателей и громкоговорителей. Мягкие ферриты, с другой стороны, имеют низкую коэрцитивную силу и используются для изготовления электронных индукторов, трансформаторов и различных микроволновых компонентов.

II) магниты Алнико

Магнит-подкова из алнико 5 | Эта U-образная форма образует мощное магнитное поле между полюсами, позволяя магниту захватывать тяжелые ферромагнитные материалы.

Магниты алнико состоят из алюминия (Al), никеля (Ni) и кобальта (Co), отсюда и название al-ni-co. Они часто включают титан и медь.

В отличие от керамических магнитов, они являются электропроводящими и имеют высокие температуры плавления.

Чтобы классифицировать их (основываясь на их магнитных свойствах и химическом составе), Ассоциация производителей магнитных материалов присвоила им номера, такие как Alnico 3 или Alnico 7.

Алникос был самым сильным типом постоянных магнитов до развития редкоземельных магнитов в 1970-х годах. Известно, что они создают высокую напряженность магнитного поля на своих полюсах – до 0,15 Тесла, что в 3000 раз сильнее, чем магнитное поле Земли.

Сплавы Alnico могут сохранять свои магнитные свойства при высоких рабочих температурах, вплоть до 800 градусов Цельсия. Фактически, они являются единственными магнитами, которые имеют магнетизм при нагревании раскаленным докрасна.

Эти магниты широко используются в бытовых и промышленных применениях: несколько примеров – это магнетронные трубки, датчики, микрофоны, электродвигатели, громкоговорители, электронные трубки, радары.

III) Редкоземельные магниты

Как следует из названия, редкоземельные магниты изготавливаются из сплавов редкоземельных элементов. Это самый сильный тип постоянных магнитов, разработанный в 1970-х годах. Их магнитное поле может легко превышать 1 Тесла.

Два типа редкоземельных магнитов – самарий-кобальтовые и неодимовые магниты. Оба уязвимы для коррозии и очень хрупкие. Таким образом, они покрыты определенным слоем (слоями), чтобы защитить их от сколов или поломок.

Самарий-кобальтовые магниты состоят из празеодима, церия, гадолиния, железа, меди и циркония. Они могут сохранять свои магнитные свойства при высоких температурах и обладают высокой устойчивостью к окислению.

Из-за их меньшей напряженности магнитного поля и высокой стоимости производства они используются реже, чем другие редкоземельные магниты. В настоящее время они используются в настольном ядерно-магнитно-резонансном спектрометре, высококачественных электродвигателях, турбомашиностроении и во многих областях, где производительность должна соответствовать изменению температуры.

Неодимовые магниты, с другой стороны, являются наиболее доступным и сильным типом редкоземельных магнитов. Они представляют собой тетрагональную кристаллическую структуру, изготовленную из сплавов неодима, бора и железа.

Благодаря своим меньшим размерам и небольшому весу они заменили ферритовые и алникомагниты в многочисленных применениях в современных технологиях. Например, неодимовые магниты в настоящее время используются в головном приводе для компьютерных жестких дисков, электродвигателей для аккумуляторных инструментов, механических переключателей электронных сигарет и динамиков мобильных телефонов.

IV) одномолекулярные магниты

Универсальный внутриклеточный белок, называемый ферритином, считается магнитом с одной молекулой. Он хранит железо и выпускает его контролируемым образом.

К концу 20-го века ученые узнали, что некоторые молекулы [которые состоят из ионов парамагнитного металла] могут проявлять магнитные свойства при очень низких температурах.

Теоретически они способны хранить информацию на уровне магнитных доменов и обеспечивать гораздо более плотный носитель, чем традиционные магниты.

Одномолекулярные магниты состоят из кластеров марганца, никеля, железа, ванадия и кобальта. Было обнаружено, что некоторые цепные системы, такие как одноцепные магниты, сохраняют магнетизм в течение длительного периода времени при более высоких температурах.

Исследователи в настоящее время изучают монослои таких магнитов. Одним из ранних соединений, которое было исследовано в качестве одно-молекулярного магнита, является додекануклеарная марганцевая клетка.

Потенциальные возможности применения этих магнитов огромны. К ним относятся квантовые вычисления, хранение данных, обработка информации и биомедицинские приложения, такие как контрастные агенты МРТ.

2. Временные магниты

Некоторые объекты могут быть легко намагничены даже слабым магнитным полем. Однако, когда магнитное поле удалено, они теряют свой магнетизм.

Временные магниты различаются по составу: они могут быть любым объектом, который действует как постоянный магнит в присутствии магнитного поля. Например, магнитомягкий материал, такой как никель и железо, не будет притягивать скрепки после удаления внешнего магнитного поля.

Когда постоянный магнит подносится к группе стальных гвоздей, гвозди прикрепляются друг к другу, а затем к постоянному магниту. В этом случае каждый гвоздь становится временным магнитом, а когда постоянный магнит удаляется, они больше не прикрепляются друг к другу.

Временные магниты в основном используются для изготовления временных электромагнитов, сила которых может варьироваться в соответствии с требованиями. Они также используются для разделения материалов, сделанных из металла, на складах металлолома и дают новый импульс современной технологии – от высокоскоростных поездов до высокотехнологичного пространства.

3. Электромагнит

Электромагнит притягивающий железные опилки

Электромагнит был изобретен британским ученым Уильямом Стердженом в 1824 году. Затем он был систематически усовершенствован и популяризирован американским ученым Джозефом Генри в начале 1830-х годов.

Электромагниты представляют собой плотно намотанные витки провода, которые функционируют как магниты при прохождении электрического тока. Его также можно классифицировать как временный магнит, поскольку магнитное поле исчезает, как только ток отключается.

Полярность и напряженность магнитного поля, создаваемого электромагнитом, можно регулировать, изменяя направление и величину тока, протекающего через провод. Это главное преимущество электромагнитов перед постоянными магнитами.

Для усиления магнитного поля катушка обычно наматывается на сердечник из «мягкого» ферромагнитного материала, такого как мягкая сталь. Провод, свернутый в одну или несколько петель, называется соленоидом.

Эти типы магнитов широко используются в электрических и электромеханических устройствах, включая жесткие диски, громкоговорители, жесткие диски, трансформаторы, электрические звонки, МРТ-машины, ускорители частиц и различные научные приборы.

Электромагниты также используются в промышленности для захвата и перемещения тяжелых предметов, таких как металлолом и сталь.

Источник: https://new-science.ru/3-raznyh-tipa-magnitov-i-ih-primenenie/

Постоянные магниты

Применение магнитов

Одно из самых удивительных явлений природы – это проявление магнетизма у некоторых материалов. Постоянные магниты известны с древних времён.

До свершения великих открытий в сфере электричества постоянные магниты активно использовались лекарями разных народов в медицине. Доставались они людям из недр земли в виде кусков магнитного железняка.

Со временем люди научились создавать искусственные магниты, помещая изделия из сплавов железа рядом с природными источниками магнитного поля.

Природа магнетизма

Демонстрация свойств магнита в притягивании к себе металлических предметов у людей вызывает вопрос: что такое представляют собой постоянные магниты? Какова же природа такого явления, как возникновение тяги металлических предметов в сторону магнетита?

Первое объяснение природы магнетизма дал в своей гипотезе великий учёный – Ампер. В любой материи протекают электрические токи той или иной степени силы. Иначе их называют токами Ампера. Электроны, вращаясь вокруг собственной оси, вдобавок обращаются вокруг ядра атома. Благодаря этому, возникают элементарные магнитные поля, которые взаимодействуя между собой, формируют общее поле вещества.

В потенциальных магнетитах при отсутствии внешнего воздействия поля элементов атомной решётки ориентированы хаотически.

Внешнее магнетическое поле «выстраивает» микрополя структуры материала в строго определённом направлении. Потенциалы противоположных концов магнетита взаимно отталкиваются.

Если приближать одинаковые полюсы двух полосовых ПМ, то руки человека ощутят сопротивление движению. Разные полюсы будут стремиться друг к другу.

При помещении стали или железного сплава во внешнее магнитное поле происходит строгое ориентирование внутренних полей металла в одном направлении. В результате этого материал приобретает свойства постоянного магнита (ПМ).

Как увидеть магнитное поле

Чтобы визуально ощутить структуру магнитного поля, достаточно провести несложный эксперимент. Для этого берут два магнита и мелкую металлическую стружку.

Важно! В обиходе постоянные магниты встречаются двух форм: в виде прямой полосы и подковы.

Накрыв полосовой ПМ листом бумаги, на него насыпают железные опилки. Частички мгновенно выстраиваются вдоль силовых линий магнитного поля, что даёт наглядное представление о данном явлении.

Демонстрация структуры магнитного поля

Виды магнитов

Что является источником магнитного поля

Постоянные магниты разделяют на 2 вида:

  • естественные;
  • искусственные.

Естественные

В природе естественный постоянный магнит – это ископаемое в виде обломка железняка. Магнитная порода (магнетит) в каждом народе имеет своё название. Но в каждом наименовании присутствует такое понятие, как «любящий», «притягивающий металл».

Название Магнитогорск означает расположение города рядом с горными залежами естественного магнетита. В течение многих десятков лет здесь велась активная добыча магнитной руды. На сегодня от Магнитной горы ничего не осталось.

Это была разработка и добыча естественного магнетита.

Пока человечеством не был достигнут должный уровень научно-технического прогресса, естественные постоянные магниты служили для разных забав и фокусов.

Искусственные

Искусственные ПМ получают путём наведения внешнего магнитного поля на различные металлы и их сплавы. Было замечено, что одни материалы сохраняют приобретённое поле в течение длительного времени – их называют твёрдыми магнитами. Быстро теряющие свойства постоянных магнитов материалы носят называние мягких магнитов.

В условиях заводского производства применяют сложные металлические сплавы. В структуру сплава «магнико» входят железо, никель и кобальт. В состав сплава «альнико» вместо железа включают алюминий.

Изделия из этих сплавов взаимодействуют с мощными электромагнитными полями. В результате получают достаточно мощные ПМ.

Применение постоянных магнитов

Немаловажное значение имеют ПМ в различных областях деятельности человека. В зависимости от сферы применения, ПМ обладают различными характеристиками. В последнее время активно применяемый основной магнитный сплав NdFeB состоит из следующих химических элементов:

  • «Nd» – ниодия,
  • «Fe» – железа,
  • «B» – бора.

Формула магнитного потока

Сферы, где применяют постоянные магниты:

  1. Экология;
  2. Гальваника;
  3. Медицина;
  4. Транспорт;
  5. Компьютерные технологии;
  6. Бытовые приспособления;
  7. Электротехника.

Экология

Разработаны и действуют различные системы очистки отходов промышленного производства. Магнитные системы очищают жидкости во время производства аммиака, метанола и других веществ. Магнитные улавливатели «выбирают» из потока все железосодержащие частицы.

Кольцевидные ПМ устанавливают внутри газоходов, которые избавляют газообразные выхлопы от ферромагнитных включений.

Сепараторные магнитные ловушки активно отбирают металлосодержащий мусор на конвейерных линиях переработки техногенных отходов.

Гальваника

Гальваническое производство основано на движении заряженных ионов металла к противоположным полюсам электродов постоянного тока. ПМ играют роль держателей изделий в гальваническом бассейне. В промышленных установках с гальваническими процессами устанавливают магниты только из сплава NdFeB.

Медицина

В последнее время производителями медицинского оборудования широко рекламируются приборы и устройства на основе постоянных магнитов. Постоянное интенсивное поле обеспечивается характеристикой сплава NdFeB.

Свойство постоянных магнитов используют для нормализации кровеносной системы, погашения воспалительных процессов, восстановления хрящевых тканей и прочее.

Транспорт

Транспортные системы на производстве оснащены установками с ПМ. При конвейерном перемещении сырья магниты удаляют из массива ненужные металлические включения. С помощью магнитов направляют различные изделия в разные плоскости.

Обратите внимание! Постоянные магниты используют для сепарации таких материалов, где присутствие людей может пагубно сказаться на их здоровье.

Автомобильный транспорт оснащают массой приборов, узлов и устройств, где основную роль играют ПМ. Это электронное зажигание, автоматические стеклоподъёмники, управление холостым ходом, бензиновые, дизельные насосы, приборы передней панели и многое другое.

Компьютерные технологии

Все подвижные приборы и устройства в компьютерной технике оснащены магнитными элементами. Перечень включает в себя принтеры, движки драйверов, моторчики дисководов и другие устройства.

Бытовые приспособления

В основном это держатели небольших предметов быта. Полки с магнитными держателями, крепления штор и занавесок, держатели набора кухонных ножей и ещё масса приборов домашнего обихода.

Электротехника

Электротехника, построенная на ПМ, касается таких сфер, как радиотехнические устройства, генераторы и электродвигатели.

Радиотехника

ПМ используют с целью повышения компактности радиотехнических приборов, обеспечения автономности устройств.

Генераторы

Генераторы на ПМ решают проблему подвижных контактов – колец со щётками. В традиционных устройствах промышленного назначения остро стоят вопросы, связанные со сложным обслуживанием оборудования, быстрым износом деталей, значительной потерей энергии в цепях возбуждения.

Единственным препятствием на пути создания таких генераторов является проблема крепления ПМ на вращающемся роторе. В последнее время магниты располагают в продольных пазах ротора, заливая их легкоплавким материалом.

Ротор и статор генератора

Электродвигатели

В бытовой технике и в некотором промышленном оборудовании получили распространение синхронные электрические двигатели на постоянных магнитах – это вентильные моторы постоянного тока.

Как и в вышеописанных генераторах, ПМ устанавливают на роторах, вращающихся внутри статоров с неподвижной обмоткой. Главное преимущество электродвигателя заключается в отсутствии недолговечных токопроводящих контактов на коллекторе ротора.

Электродвигатель с постоянными магнитами

Двигатели такого типа – это маломощные устройства. Однако это нисколько не преуменьшает их полезность применения в области электротехники.

Дополнительная информация. Отличительная особенность устройства – это наличие датчика Холла, регулирующего обороты ротора.

Автор надеется, что по прочтении данной статьи у читателя сложится понятное представление о том, что такое постоянный магнит. Активное внедрение постоянных магнитов в сферу деятельности человека стимулирует изобретения и создание новых ферромагнитных сплавов, имеющих повышенные магнетические характеристики.

Источник: https://amperof.ru/elektropribory/postoyannye-magnity.html

Рефераты

Применение магнитов

Уважаемые школьники и студенты! 

Уже сейчас на сайте вы можете воспользоваться более чем 20 000 рефератами, докладами, шпаргалками, курсовыми и дипломными работами.Присылайте нам свои новые работы и мы их обязательно опубликуем. Давайте продолжим создавать нашу коллекцию рефератов вместе!!!

Вы согласны передать свой реферат (диплом, курсовую работу и т.п.), а также дальнейшие права на хранение,  и распространение данного документа администрации сервера “mcvouo.ru”?

Дата добавления: март 2006г.

В самом начале работы полезно будет дать несколько определений и пояснений. Если, в каком то месте, на движущиеся тела, обладающие зарядом, действует сила, которая не действует на неподвижные или лишенные заряда тела, то говорят, что в этом месте присутствуетмагнитное поле – одна из форм более общего электромагнитного поля.

Есть тела, способные создавать вокруг себя магнитное поле (и на такое тело тоже действует сила магнитного поля), про них говорят, что эти тела намагничены и обладают магнитным моментом, который и определяет свойство тела создавать магнитное поле. Такие тела называютмагнитами.

Следует отметить, что разные материалы по разному реагируют на внешнее магнитное поле.

Есть материалы ослабляющие действие внешнего поля внутри себя – парамагнетики и усиливающие внешнее поле внутри себя – диамагнетики. Есть материалы с огромной способностью (в тысячи раз) усиливать внешнее поле внутри себя – железо, кобальт, никель, гадолиний, сплавы и соединения этих металлов, их называют – ферромагнетики.

Есть среди ферромагнетиков материалы которые после воздействия на них достаточно сильного внешнего магнитного поля сами становятся магнитами– это магнитотвердые материалы. Есть материалы концентрирующие в себе внешнее магнитное поле и, пока оно действует, ведут себя как магниты; но если внешнее поле исчезает они не становятся магнитами– это магнитомягкие материалы    ВВЕДЕНИЕ.

Мы привыкли к магниту и относимся к нему чуточку снисходительно как к устаревшему атрибуту школьных уроков физики, порой даже не подозревая, сколько магнитов вокруг нас. В наших квартирах десятки магнитов: в электробритвах, динамиках, магнитофонах, в часах, в банках с гвоздями, наконец.

Сами мы–тоже магниты: биотоки, текущие в нас, рождают вокруг нас причудливый узор магнитных силовых линий. Земля, на которой мы живём, – гигантский голубой магнит. Солнце– жёлтый плазменный шар –магнит ещё более грандиозный. Галактик и туманности, едва различимые телескопами, – непостижимые по размерам магниты.

Термоядерный синтез, магнитодинамическое генерирование электроэнергии, ускорение заряженных частиц в синхротронах, подъём затонувших судов–всё это области, где требуются грандиозные, невиданные раньше по размерам магниты.

Проблема создания сильных, сверхсильных, ультрасильных и ещё более сильных магнитных полей стала одной из основных в современной физике и технике.

Магнит известен человеку с незапамятных времён. До нас дошли упоминания о магнитах и их свойствах в трудах Фалеса Милетского (прибл. 600 до н. э. ) и Платона (427–347 до н. э. ). Само слово «магнит» возникло в связи с тем, что природные магниты были обнаружены греками в Магнесии (Фессалия).

Естественные (или природные) магниты встречаются в природе в виде залежей магнитных руд. В Тартуском университете находится самый крупный известный естественный магнит. Его масса составляет 13 кг, и он способен поднять груз в 40 кг.

Искусственные магниты – это магниты созданные человеком на основе различных ферромагнетиков. Так называемые «порошковые» магниты (из железа, кобальта и некоторых других добавок) могут удержать груз более чем 5000 раз превышающий их собственную массу.    Существуют искусственные магниты двух разных видов:

Одни – так называемые постоянные магниты, изготовляемые из «магнитно-твердых» материалов. Их магнитные свойства не связаны с использованием внешних источников или токов.

К другому виду относятся так называемые электромагниты с сердечником из «магнитно-мягкого» железа. Создаваемые ими магнитные поля обусловлены в основном тем, что по проводу обмотки, охватывающей сердечник, проходит электрический ток. В 1600 году в Лондоне вышла книга королевского врача В.

Гильберта “О магните, магнитных телах и большом магните – Земле”. Это сочинение явилось первой известной нам попыткой исследования магнитных явлений с позиций науки. В этом труде собраны имевшиеся тогда сведения об электричестве и магнетизме, а также результаты собственных экспериментов автора.

Из всего, с чем сталкивается человек, он прежде всего стремится извлечь практическую пользу. Не миновал этой судьбы и магнит

В моей работе я попытаюсь проследить, как используются магниты человеком не для войны, а в мирных целях, в том числе применение магнитов в биологии, медицине, в быту.    ИСПОЛЬЗОВАНИЕ МАГНИТОВ.

Далее дан краткий обзор приборов и областей науки и техники где используются магниты.

КОМПАС, прибор для определения горизонтальных направлений на местности.

Применяется для определения направления, в котором движется морское, воздушное судно, наземное транспортное средство; направления, в котором идет пешеход; направления на некоторый объект или ориентир.

Компасы подразделяются на два основных класса: магнитные компасы типа стрелочных, которыми пользуются топографы и туристы, и немагнитные, такие, как гирокомпас и радиокомпас.

К 11 в. относится сообщение китайцев Шен Куа и Чу Ю об изготовлении компасов из природных магнитов и использовании их в навигации. Если

длинная игла из природного магнита уравновешена на оси, позволяющей ей свободно поворачиваться в горизонтальной плоскости, то она всегда обращена одним концом к северу, а другим–к югу. Пометив указывающий на север конец, можно пользоваться таким компасом для определения направлений.

Магнитные эффекты концентрировались у концов такой иглы, и поэтому их назвали полюсами (соответственно северным и южным).

Основное применение магнит находит в электротехнике, радиотехнике, приборостроении, автоматике и телемеханике. Здесь ферромагнитные материалы идут на изготовление магнитопроводов, реле и т. д.

В 1820 Г. Эрстед (1777–1851) обнаружил, что проводник с током воздействует на магнитную стрелку, поворачивая ее. Буквально неделей позже Ампер показал, что два параллельных проводника с током одного направления притягиваются друг к другу.

Позднее он высказал предположение, что все магнитные явления обусловлены токами, причем магнитные свойства постоянных магнитов связаны с токами, постоянно циркулирующими внутри этих магнитов.

Это предположение полностью соответствует современным представлениям.

Электромашинные генераторы и электродвигатели – машины вращательного типа, преобразующие либо механическую энергию в электрическую (генераторы), либо электрическую в механическую (двигатели).

Действие генераторов основано на принципе электромагнитной индукции: в проводе, движущемся в магнитном поле, наводится электродвижущая сила (ЭДС).

Действие электродвигателей основано на том, что на провод с током, помещенный в поперечное магнитное поле, действует сила.

Магнитоэлектрические приборы. В таких приборах используется сила взаимодействия магнитного поля с током в витках обмотки подвижной части, стремящаяся повернуть последнюю Индукционные счетчики электроэнергии.

Индукционный счетчик представляет собой не что иное, как маломощный электродвигатель переменного тока с двумя обмотками–токовой и обмоткой напряжения. Проводящий диск, помещенный между обмотками, вращается под действием крутящего момента, пропорционального потребляемой мощности.

Этот момент уравновешивается токами, наводимыми в диске постоянным магнитом, так что частота вращения диска пропорциональна потребляемой мощности.

Электрические наручные часыпитаются миниатюрной батарейкой. Для их работы требуется гораздо меньше деталей, чем в механических часах; так, в схему типичных электрических портативных часов входят два магнита, две катушки индуктивности и транзистор.

Замок – механическое, электрическое или электронное устройство, ограничивающее возможность несанкционированного пользования чем-либо.

Замок может приводиться в действие устройством (ключом), имеющимся в распоряжении определенного лица, информацией (цифровым или буквенным кодом), вводимой этим лицом, или какой либо индивидуальной характеристикой (например, рисунком сетчатки глаза) этого лица.

Замок обычно временно соединяет друг с другом два узла или две детали в одном устройстве. Чаще всего замки бывают механическими, но все более широкое применение находят электромагнитные замки.

Магнитные замки. В цилиндровых замках некоторых моделей применяются магнитные элементы. Замок и ключ снабжены ответными кодовыми наборами постоянных магнитов. Когда в замочную скважину вставляется правильный ключ, он притягивает и устанавливает в нужное положение внутренние магнитные элементы замка, что и позволяет открыть замок.

Динамометр – механический или электрический прибор для измерения силы тяги или крутящего момента машины, станка или двигателя.

Тормозные динамометры бывают самых различных конструкций; к ним относятся, например, тормоз Прони, гидравлический и электромагнитный тормоза.

Электромагнитный динамометрможет быть выполнен в виде миниатюрного прибора, пригодного для измерений характеристик малогабаритных двигателей.

Гальванометр –чувствительный прибор для измерения слабых токов.

В гальванометре используется вращающий момент, возникающий при взаимодействии подковообразного постоянного магнита с небольшой токонесущей катушкой (слабым электромагнитом), подвешенной в зазоре между полюсами магнита.

Вращающий момент, а следовательно, и отклонение катушки пропорциональны току и полной магнитной индукции в воздушном зазоре, так что шкала прибора при небольших отклонениях катушки почти линейна. Приборы на его базе – самый распространенный вид приборов.

   Спектр выпускаемых приборов широк и разнообразен: приборы щитовые постоянного и переменного тока (магнитоэлектрической, магнитоэлектри- ческой с выпрямителем и электромагнитной систем), комбинированные приборы ампервольтомметры, для диагностирования и регулировки электрооборудования автомашин, измерения температуры плоских поверхностей, приборы для оснащения школьных учебных кабинетов, тестеры и измерители всевозможных электрических параметров

Производство абразивов – мелких, твердых, острых частиц, используемых в свободном или связанном виде для механической обработки (в т. ч.

для придания формы, обдирки, шлифования, полирования) разнообразных материалов и изделий из них (от больших стальных плит до листов фанеры, оптических стекол и компьютерных микросхем). Абразивы бывают естественные или искусственные. Действие абразивов сводится к удалению части материала с обрабатываемой поверхности.

В процессе производства искусственных абразивов ферросилиций, присутствующий в смеси, оседает на дно печи, но небольшие его количества внедряются в абразив и позже удаляются магнитом.

Магнитные свойства вещества находят широкое применение в науке и технике как средство изучения структуры различных тел. Так возниклинауки:

Магнетохимия(магнитохимия) – раздел физической химии, в котором изучается связь между магнитными и химическими свойствами веществ; кроме того, магнитохимия исследует влияние магнитных полей на химические процессы. магнитохимия опирается на современную физику магнитных явлений. Изучение связи между магнитными и химическими свойствами позволяет выяснить особенности химического строения вещества.

Магнитная дефектоскопия, метод поиска дефектов, основанный на исследовании искажений магнитного поля, возникающих в местах дефектов в изделиях из ферромагнитных материалов.     . Техника сверхвысокочастотного диапазона

Сверхвысоко частотный диапазон (СВЧ) – частотный диапазон электромагнитного излучения (100ё300 000 млн. герц), расположенный в спектре между ультравысокими телевизионными частотами и частотами дальней инфракрасной области

Связь. Радиоволны СВЧ-диапазона широко применяются в технике связи. Кроме различных радиосистем военного назначения, во всех странах мира имеются многочисленные коммерческие линии СВЧ-связи.

Поскольку такие радиоволны не следуют за кривизной земной поверхности, а распространяются по прямой, эти линии связи, как правило, состоят из ретрансляционных станций, установленных на вершинах холмов или на радиобашнях с интервалами около 50 км.

Термообработка пищевых продуктов. СВЧ-излучение применяется для термообработки пищевых продуктов в домашних условиях и в пищевой промышленности. Энергия, генерируемая мощными электронными лампами, может быть сконцентрирована в малом объеме для высокоэффективной тепловой обработки продуктов в т. н.

микроволновых или СВЧ-печах, отличающихся чистотой, бесшумностью и компактностью. Такие устройства применяются на самолетных бортовых кухнях, в железнодорожных вагонах-ресторанах и торговых автоматах, где требуются быстрые подготовка продуктов и приготовление блюд.

Промышленность выпускает также СВЧ-печи бытового назначения. Быстрый прогресс в области СВЧ-техники в значительной мере связан с изобретением специальных электровакуумных приборов–магнетрона и клистрона, способных генерировать большие количества СВЧ-энергии.

Генератор на обычном вакуумном триоде, используемый на низких частотах, в СВЧ-диапазоне оказывается весьма неэффективным.

Магнетрон. В магнетроне, изобретенном в Великобритании перед Второй мировой войной, эти недостатки отсутствуют, поскольку за основу взят совершенно иной подход к генерации СВЧ-излучения– принцип объемного резонатора

В магнетроне предусмотрено несколько объемных резонаторов, симметрично расположенных вокруг катода, находящегося в центре. Прибор помещают между полюсами сильного магнита.

Лампа бегущей волны (ЛБВ). Еще один электровакуумный прибор для генерации и усиления электромагнитных волн СВЧ-диапазона–лампа бегущей волны. Она представляет собой тонкую откачанную трубку, вставляемую в фокусирующую магнитную катушку.

Ускоритель частиц, установка, в которой с помощью электрических и магнитных полей получаются направленные пучки электронов, протонов, ионов и других заряженных частиц с энергией, значительно превышающей тепловую энергию.

В современных ускорителях используются многочисленные и разнообразные виды техники, в т. ч. мощные прецизионные магниты.

В медицинской терапии и диагностике ускорители играют важную практическую роль. Многие больничные учреждения во всем мире сегодня имеют в своем распоряжении небольшие электронные линейные ускорители, генерирующие интенсивное рентгеновское излучение, применяемое для терапии опухолей.

В меньшей мере используются циклотроны или синхротроны, генерирующие протонные пучки. Преимущество протонов в терапии опухолей перед рентгеновским излучением состоит в более локализованном энерговыделении.

Поэтому протонная терапия особенно эффективна при лечении опухолей мозга и глаз, когда повреждение окружающих здоровых тканей должно быть по возможности минимальным.

Представители различных наук учитывают магнитные поля в своих исследованиях. Физик измеряет магнитные поля атомов и элементарных частиц, астроном изучает роль космических полей в процессе формирования новых звёзд, геолог по аномалиям магнитного поля Земли отыскивает залежи магнитных руд, с недавнего времени биология тоже активно включилась в изучение и использование магнитов.

Биологическая наукапервой половины XX века уверенно описывала жизненные функции, вовсе не учитывая существования каких-либо магнитных полей. Более того, некоторые биологи считали нужным подчеркнуть, что даже сильное искусственное магнитное поле не оказывает никакого влияния на биологические объекты.

В энциклопедиях о влиянии магнитных полей на биологические процессы ничего не говорилось. В научной литературе всего мира ежегодно появлялись единичные позитивные соображения о том или ином биологическом эффекте магнитных полей.

Однако этот слабый ручеёк не мог растопить айсберг недоверия даже к постановке самой проблемы… И вдруг ручеёк превратился в бурный поток.

Лавина магнитобиологических публикаций, словно сорвавшись с какой– то вершины, с начала 60 – х годов непрестанно увеличивается и заглушает скептические высказывания.

От алхимиков XVI века и до наших дней биологическое действие магнита много раз находило поклонников и критиков. Неоднократно в течение нескольких веков наблюдались всплески и спады интереса к лечебному действию магнита. С его помощью пытались лечить (и не безуспешно) нервные болезни, зубную боль, бессонницу, боли в печени и в желудке– сотни болезней.

Для лечебных целей магнит стал употребляться, вероятно, раньше, чем для определения сторон света.

Как местное наружное средство и в качестве амулета магнит пользовался большим успехом у китайцев, индусов, египтян, арабов. ГРЕКОВ, римлян и т. д. О его лечебных свойствах упоминают в своих трудах философ Аристотель и историк Плиний.

Во второй половине XX века широко распространились магнитные браслеты, благотворно влияющие на больных с нарушением кровяного давления (гипертония и гипотония).

Кроме постоянных магнитов используются и электромагниты. Их также применяют для широкого спектра проблем в науке, технике, электронике, медицине (нервные заболевания, заболевания сосудов конечностей, сердечно–сосудистые заболевания, раковые заболевания).

Более всего учёные склоняются к мысли, что магнитные поля повышают сопротивляемость организма.

Существуют электромагнитные измерители скорости движения крови, миниатюрные капсулы, которые с помощью внешних магнитных полей можно перемещать по кровеносным сосудам чтобы расширять их, брать пробы на определённых участках пути или, наоборот, локально выводить из капсул различные медикаменты.

Широко распространён магнитный метод удаления металлических частиц из глаза.

Большинству из нас известно исследование работы сердца с помощью электрических датчиков–электрокардиограмма. Электрические импульсы, вырабатываемые сердцем, создают магнитное поле сердца, которое в max значениях составляет 10-6 напряжённости магнитного поля Земли. Ценность магнитокардиографии в том, что она позволяет получить сведения об электрически “немых” областях сердца.

Надо отметить, что биологи сейчас просят физиков дать теорию первичного механизма биологического действия магнитного поля, а физики в ответ требуют от биологов побольше проверенных биологических фактов. Очевидно, что успешным будет тесное сотрудничество различных специалистов.

Важным звеном, объединяющим магнитобиологические проблемы, является реакция нервной системы на магнитные поля. Именно мозг первым реагирует на любые изменения во внешней среде. Именно изучение его реакций будет ключём к решению многих задач магнитобиологии.

Самый простой вывод, который можно сделать из выше сказанного – нет области прикладной деятельности человека, где бы не применялись магниты.    Использованная литература:    БСЭ, второе издание, Москва, 1957 г.

Холодов Ю. А. “Человек в магнитной паутине”, “Знание”, Москва, 1972 г. Материалы из интернет – энциклопедии    Путилов К. А. «Курс физики» , «Физматгиз», Москва, 1964г.

Источник: https://mcvouo.ru/referats/5/1027.htm

Магниты, их служба человеку

Применение магнитов

Колбунова Марина Викторовна, преподаватель
Санкт-Петербург

Обобщить материал по данной теме в помощь преподавателям физики, электротехники и студентам, изучающим эти дисциплины

Ваш диплом готов. Если у вас не получается скачать диплом, открыть его или он содержит ошибки, просьба написать нам на электронную почту konkurs@edu-time.ru

Магниты, их служба человеку.

Предметная область: физика, электротехника

Работу выполнила:

Колбунова Марина Викторовна, преподаватель

Спб ГБПОУ «Академия управления городской средой, градостроительства и печати»

Санкт-Петербург2018 год

Стр.

Введение………………………………………………………..3

Основная часть. Магниты, их служба человечеству

История открытия…………………………………………..4

Виды магнитов………………………………………………6

Использование магнитов в науке и технике……………….7

Использование магнитов в быту………………………….10

Применение магнитов в медицине………………………..12

Заключение…………………………………………………….17

Введение

Магнит – одно из древнейших открытий, сделанных людьми. Магниты всегда привлекали внимание: изучали природу их действия и воздействие на окружающие предметы.

И хотя многое уже понятно, некоторая таинственность воздействия магнитных сил побуждает ученых к дальнейшим исследованиям и открывает все новые перспективы применения магнитов.

Мы поставили перед собой задачу изучения видов магнитов, природы возникновения магнитного поля, воздействие его на человека и окружающую природу, использование магнитов в промышленности и быту.

II. Основная часть.Магниты на службе человечеству.

История открытия магнитов.

Магнит испокон веков вызывал у людей интерес и удивление. Его способность притягивать и отталкивать заставляла древнейшие цивилизации рассматривать его как особое творение природы. Магни́т — тело, обладающее собственным магнитным полем.

Возможно, слово происходит от др.-греч.

Μαγνῆτις λίθος (Magnētis líthos), «камень из Магнесии» — от названия региона Магнисия и древнего города Магнесия в Малой Азии, где в древности были открыты залежи магнетита (магнитного железняка)

Существуют другие легенды происхождения названия «магнит». Так рассказывают о пастухе по имени Магнус (у Льва Толстого в рассказе для детей «Магнит» этого пастуха зовут Магнис). Он обнаружил однажды, что железный наконечник его палки и гвозди сапог притягиваются к чёрному камню. Этот камень стали называть «камнем Магнуса» или просто «магнитом».

Таким образом, за много веков до нашей эры было известно, что некоторые каменные породы обладают свойством притягивать куски железа. Об этом упоминал в VI веке до нашей эры греческий ученый и философ Фалес. Первое научное изучение свойств магнита было предпринято в XIII веке ученым Петром Перегрином.

В 1269 году вышло его сочинение «Книга о магните», где он писал о многих фактах магнетизма: у магнита есть два полюса, которые ученый назвал северным и южным; невозможно отделить полюса друг от друга разламыванием. Перегрин писал и о двух видах взаимодействия полюсов — притяжении и отталкивании.

К XII—XIII векам нашей эры магнитные компасы уже использовались в навигации в Европе, в Китае и других странах мира.

В 1600 году вышло сочинение английского врача Уильяма Гильберта «О магните». К известным уже фактам Гильберт прибавил важные наблюдения: усиление действия магнитных полюсов железной арматурой, потерю магнетизма при нагревании и другие.

В 1820 году датский физик Ганс Христиан Эрстед на лекции демонстрировал опыт, включив электрический ток вблизи магнитной стрелки. Он был буквально озадачен, увидев, что магнитная стрелка после включения тока начала совершать колебания. Эрстед оценил значения своего наблюдения и повторил опыт.

Соединив длинным проводом полюса гальванической батареи, Эрстед протянул провод горизонтально и параллельно свободно подвешенной магнитной стрелке. Как только был включён ток, стрелка немедленно отклонилась, стремясь встать перпендикулярно к направлению провода.

При изменении направления тока стрелка отклонилась в другую сторону. Вскоре Эрстед доказал, что магнит действует с некоторой силой на провод, по которому идёт ток.

Открытие взаимодействия между электрическим током и магнитом имело огромное значение. Оно стало началом новой эпохи в учении об электричестве и магнетизме. Это взаимодействие сыграло важную роль в развитии техники физического эксперимента.

Узнав об открытии Эрстеда, французский физик Доминик Франсуа Араго начал серию опытов. Он обмотал медной проволокой стеклянную трубку, в которую вставил железный стержень. Как только замкнули электрическую цепь, стержень сильно намагнитился и к его концу крепко прилипли железные ключи; когда выключили ток, ключи отпали.

Араго рассматривал проводник, по которому идёт ток, как магнит. Правильное объяснение этого явления было дано после исследований французского физика Андре Ампера, который установил внутреннюю связь между электричеством и магнетизмом. В сентябре 1820 года он сообщил Французской Академии наук о полученных им результатах.

Ампер скрутил проводник в виде спирали. Этот провод при пропускании по нему тока приобретал свойство магнита. Ампер назвал его соленоидом. Исходя из магнитных свойств соленоида, Ампер предложил рассматривать магнетизм как явление, обязанное круговым токам.

Он считал, что магнит состоит из молекул, в которых имеются круговые токи. Каждая молекула представляет собой маленький магнитик, располагаясь одноимёнными полюсами в одну и ту же сторону, эти маленькие магнитики и образуют магнит.

Проводя вдоль стальной полосы магнитом (несколько раз в одну и ту же сторону), мы заставляем молекулы с круговыми токами ориентироваться в пространстве одинаково. Таким образом, стальная пластинка превратится в магнит. Простейшим и самым маленьким магнитом можно считать электрон.

Его движение создает магнитное поле. Сегодня существует квантовая теории электромагнитного поля.

Виды магнитов

Постоянный магнит — изделие, изготовленное из ферромагнетика, способного сохранять остаточную намагниченность после выключения внешнего магнитного поля.

В качестве материалов для постоянных магнитов обычно используют железо, никель, кобальт, некоторые сплавы редкоземельных металлов (как, например, в неодимовых магнитах), а также некоторые естественные минералы, такие как магнетиты. Постоянные магниты применяются в качестве автономных (не потребляющих энергии) источников магнитного поля.

Свойства магнита определяются характеристиками петли магнитного гистерезиса материала магнита: остаточной индукцией Br и коэрцитивной силой Hc. Чем выше Br и Hc, тем выше намагниченность и стабильность магнита. Характерные поля постоянных магнитов — до 1 Тл.В настоящее время широко используют магниты из редкоземельного металла – неодима.

Везде, где мы имеем дело с температурами не выше 80°C, конечно, эффективней применять именно такие неодимовые магниты. Они имеют высокую мощность, но благодаря их компактному размеру не занимают много места и не создают трудностей при транспортировке.

Их используют практически повсеместно: в промышленности (приборостроение, электроника, машиностроение, магнитные системы различных назначений, обогащение полезных ископаемых и т. д.), в торговле, медицине и, конечно, в быту.

Электромагнит — устройство, магнитное поле которого создаётся при протекании электрического тока. Как правило, это катушка-соленоид со вставленным внутрь ферромагнитным (обычно стальным) сердечником с большой магнитной проницаемостью . Характерные поля электромагнитов 1,5—2 Тл. Первый электромагнит изготовил в 1825 году английский инженер Уильям Стёрджен.

Этот электромагнит представлял собой согнутый стержень из мягкого железа с обмоткой из толстой медной проволоки. Для изолирования от обмотки стержень был покрыт лаком. При пропускании тока железный стержень приобретал свойства сильного магнита, но при прерывании тока он мгновенно их терял.

Именно эта особенность электромагнитов позволила широко применять их в технике.

Использование магнитов в науке и технике

Трудно назвать такую область науки и техники, где не использовались бы магниты.

Электромагниты обязательно входят в состав электродвигателей и генераторов. Двигатели преобразовывают электрическую энергию в механическую энергию. Генераторы, наоборот, преобразуют механическую энергию в электрическую энергию путём перемещения проводника через магнитное поле.

Электрический транспорт (метро, электричка, трамвай, троллейбус) работает на электродвигателях, использующих магнитное поле.

Трансформаторы: устройства для преобразования переменного тока одного напряжения в переменный ток другого напряжения. Имеют две катушки, которые электрически изолированы, но связаны магнитно. Используют во всех видах электронной техники, поскольку электроника работает на низком напряжении, а включается в сеть с напряжением в 220В.

Маглев (magnetic levitation — «магнитная левитация»): поезд на магнитном подвесе, движимый и управляемый магнитными силами. Такой состав, в отличие от традиционных поездов, в процессе движения не касается поверхности рельса. Так как между поездом и поверхностью движения существует зазор, трение исключается, и единственной тормозящей силой является лишь сила аэродинамического сопротивления.

Ускорители частиц – установки, где получают заряженные частицы высоких энергий. В основе работы ускорителя заложено взаимодействие заряженных частиц с электрическим и магнитным полями. Существует Большой адронный коллайдер в Швейцарии. Он представляет собой кольцо длиной почти 27 километров.

Подъемный электромагнит способен перемещать громоздкие и тяжелые стальные детали. Магниты могут поднимать и небольшие, легкие предметы из ферромагнетиков (железные гвозди, скобы, кнопки, скрепки), которые являются слишком мелкими, либо их трудно достать, либо они слишком тонкие, чтобы держать их пальцами. Некоторые отвёртки специально намагничиваются для этой цели.

в компьютерных жёстких дисках запись данных происходит на тонком магнитном покрытии. Эти носители информации не являются магнитами в строгом смысле, так как они не притягивают предметы.

СВЧ – техника работает на магнетронах.

Магниты применяются в составе отклоняющей системы электронно-лучевых трубок для управления электронным пучком.

Магниты используются при неразрушающем контроле магнитопорошковым методом (МПК).

Мощные постоянные магниты (NdFeB) часто используются в медицинских приборах. Их также используют для намагничивания предметов.

Магниты нужны для изготовления сепараторов железных частиц.

Магниты – главная часть приборов магнитной ионизации.

В области автоматики и безопасности магниты применяются для изготовления реле и сенсоров.

Неодимовые магниты применяют при изготовлении турбинных генераторов. Как правило, качество генератора напрямую зависит от мощности магнита.

Магниты применяются в конструкциях бесконтактных тормозов, состоящих из двух пластин, одна — магнит, а другая из алюминия. Одна из них жёстко закреплена на раме, другая вращается с валом. Торможение регулируется зазором между ними.

Громкоговорители и микрофоны используют постоянный магнит и токовую катушку для преобразования электрической энергии (сигнала) в механическую энергию (движение, которое создает звук). Обмотка намотана на катушку, прикрепляется к диффузору и по ней протекает переменный ток, который взаимодействует с полем постоянного магнита.

Магниты применяются в СВЧ вентилях и циркуляторах для направленной передачи энергии электромагнитных колебаний.

Магниты и электромагниты являются составной частью электроизмерительных приборов. При изменении тока меняется сила, действующая на проводник со стороны магнитного поля, меняется угол поворота проводника и угол отклонения стрелки прибора.

Магниты совместно с полупроводниковым датчиком Холла используют для определения углового положения или угловой скорости вала.

Магниты используются в искровых разрядниках для ускорения гашения дуги.

Существует магнитная дефектоскопия, метод поиска дефектов, основанный на исследовании искажений магнитного поля, возникающих в местах дефектов в изделиях из магнитных материалов.

Представители различных наук учитывают магнитные поля в своих исследованиях. Физики измеряют магнитные поля атомов и элементарных частиц, астрономы изучают роль космических магнитных полей в процессе формирования новых звёзд, геологи по аномалиям магнитного поля Земли отыскивают залежи магнитных руд.

Использование магнитов в быту

Трудно перечислить все области использования магнитов в бытовой технике и окружающей нас жилой среде.

Магниты используются в компьютерных жестких дисках, в телефонии, в теле- и видеоаппаратуре.

Кредитные, дебетовые, и ATM карты — все эти карточки имеют магнитную полосу на одной стороне. Эта полоса кодирует информацию, необходимую для соединения с финансовым учреждением и связи со счетами.

Магниты используются для передачи вращающего момента «сквозь» стенку, которой может являться, например, герметичный контейнер электродвигателя. Таким образом, в бытовых счётчиках расхода воды передаётся вращение от лопаток датчика на счётный узел.

В устройстве домофона используется магнит.

Магнитный пускатель, подающий питание на обмотку любого двигателя, в том числе и двигателя лифта.

Электромагнитный тормоз, препятствующий движению кабины лифта при обесточивании двигателя

Компасы: компас (или морской компас) является намагниченным указателем, который может свободно вращаться и ориентируется на направление магнитного поля Земли.

Магниты используются в фиксаторах мебельных дверей.

Неодимовые магниты небольших размеров способны стать чудесной игрушкой как для детей, так и для взрослых. Им можно найти много разных применений.

Неодимовыми магнитами можно закреплять различные предметы. Например, можно сделать из магнитов пояс для инструментов.

Декоративное искусство: виниловые магнитные листы могут быть присоединены к живописи, фотографии и другим декоративным изделиям, что позволяет им удерживаться на холодильниках и других металлических поверхностях.

Магниты могут использоваться для производства ювелирных изделий. Ожерелья и браслеты имеют магнитную застёжку, или могут быть изготовлены полностью из нескольких, связанных между собой магнитов.

Магниты встречаются в сумках в виде вставленной внутрь закрывающей сумку кнопки намагниченной железной пластины; магниты вшивают внутрь верхней одежды для закрывания клапана одежды элегантной, невидимой глазу застёжкой.

Если магниты поместить в губки, то эти губки можно использовать для мытья тонких листовых немагнитных материалов сразу с обеих сторон, причём одна сторона может быть труднодоступной. Это могут быть, например, стёкла аквариума или балкона.

Магниты совместно с герконом применяют в специальных датчиках положения. Например, в датчиках дверей холодильников и охранных сигнализаций.

Применение магнитов в медицине

Древние цивилизации знали о лечебных свойствах магнита. Известно, что магнитотерапия упоминается в китайской «Книге Желтого Императора о сокровенной медицине», которая, как считается, была написана около 2000 лет до н.э.

Нужно учитывать то, что мы живем в магнитном поле, поскольку сама Земля представляет собой гигантский магнит. Различные авторитетные специалисты считают, что магнитное поле Земли оказывает благотворное воздействие на здоровье всех животных, растений и людей.

Однако со времен древнейших цивилизаций магнитное поле Земли изменилось. Линии электропередач, промышленное электрооборудование, бытовые электроприборы (телевизоры, радиоприемники, микроволновые печи и т. д.) ощутимо влияют на магнитное поле Земли, снижая его интенсивность.

В настоящее время использование магнитов для диагностики и лечения – магнитотерапия-повсеместно привлекает к себе внимание общественности. В Японии использование магнитов для контроля и лечения различных заболеваний стало предметом глубоких научных исследований.

Сейчас эта страна занимает ведущее положение в мире в этой области. Более десяти миллионов японцев используют магнитные кровати, чтобы снять стресс и напитать организм энергией.

Согласно японским специалистам, магниты особенно незаменимы при переутомлении, ишиасе, астме, мигрени и т. д.

Из Японии этот вид лечения пришел на Запад, где нашел много горячих приверженцев, в том числе среди психологов, врачей, физиотерапевтов, спортсменов и т. п.

Магнитотерапия получила поддержку ведущих авторитетов в области медицины: например, д-ра Уильяма Филпота, ведущего невролога из Оклахомы, США.

Он, после нескольких лет исследований, заявил, что воздействие на наше тело магнитным полем стимулирует гормон сна, мелатонин, и обеспечивает более спокойный сон. Управление продовольствия и лекарств США дало свою санкцию на использование и продажу в США различных магнитных приборов.

Эксперименты, проведенные Университетом Ломалинды (США) и несколькими другими университетами, установили, что возникновение многих хронических заболеваний связано с недостаточным кровообращением и нарушением работы нервной системы.

Если клетки не получают необходимых питательных веществ, это в конце концов приводит к какому-нибудь хроническому заболеванию. Магниты помогают восстановить работу нервной системы и улучшить кровоснабжение. Сейчас в различных частях света продолжаются исследования магнитов, и с 1960 г.

опубликовано более 4 тыс. медицинских и научных работ об использовании магнита в лечебных целях.

Обычно магнит используют для снятия боли и воспалений. Как представляется, в присутствии магнитного поля ткани работают более энергично. Если приложить магнит, то кровообращение соответствующей части тела и вокруг нее увеличивается.

Воздействие магнитного поля позволяет тканям впитывать больше кислорода. Таким образом, благодаря магнитным полям ткани активизируются, в результате чего отходы удаляются быстрее, а ткани впитывают питательные вещества более эффективно.

Поэтому работа клеток улучшается.

Каждая молекула воды в теле человека поляризована. Это означает, что одна ее часть электрически более положительна, а другая – более отрицательна. Поляризация тесно связана и взаимодействует с магнитными полями.

Кажется очевидным, что магнит, очень напоминая этим воду, помогает при любых заболеваниях. В настоящее время магниты широко используются по всему миру для лечения расстройств сна, облегчения боли, снятия воспалений.

Д-р Филпот, получивший докторскую степень по медицине в Университете Ламалинды, возглавляет Биоэлектромагнитный институт в городе Оклахома (США). Он утверждает, что человеческое тело само по себе является электромагнитной машиной.

Каждая клетка тела имеет положительное и отрицательное поле. Магнитное поле Земли играет важнейшую роль во всех видах деятельности на нашей планете, оно поддерживает жизнь живых существ и дает им силы.

Ночью воздействие магнитной энергии Земли выражается в укрепляющем сне, биологическом лечении и перезарядке энергией. Когда встает солнце, на нас воздействует магнитная энергия (энергия Северного полюса), помогая нам поддерживать дневную активность.

Итак, в течение дня мы подвергаемся влиянию Северного полюса, а в течение ночи испытываем воздействие Южного магнитного полюса. На протяжении 24 часов тело человека подвергается действию магнитных сил. Шишковидная железа в организме человека отвечает за работу гормонов и ферментов.

Ее можно назвать магнитным органом, так как она содержит кристаллы магнетита. Она повышенно чувствительна к магнитной энергии. Ночью именно эта железа вырабатывает гормон сна – мелатонин. Когда мы стареем, у нас вырабатывается меньше этих гормонов, но для крепкого сна и здоровья организму необходимо такое же количество мелатонина, что и в молодости.

Поэтому, чтобы увеличить образование этого гормона, необходимо использовать магниты. Поскольку гормоны вырабатываются самим организмом, они абсолютно безвредны. Когда организм производит их в меньшем количестве, начинается процесс старения. Одно из преимуществ магнитотерапии заключается в том, что она дешева и не имеет никаких побочных эффектов.

Магнитотерапия, помимо того, что является легкой, действенной и недорогой, дает еще и полную гарантию безопасности. Приведем отзывы о магнитотерапии некоторых врачей.

Ричард Левитон, «Исцеление энергией природы», East – West Journal, июнь 1986 г.:

«Сейчас мы стоим на пороге новой эры в науке о магнитах и их применении. Магнит – это инструмент, данный нам самой матерью-природой».

Д-р Ральф У. Сьерра, «Исцеляющая сила магнита»:

«Благодаря поразительным результатам, достигнутым с помощью магнитотерапии, она достойна занять важное место в терапевтической сфере».

Д-р медицинских наук Невиль С. Бенгали, автор книги «Магнитотерапия: теория и практика»:

«Это революция в лечении повреждений мышц, боли в суставах и проблем с осанкой. Мы лечили с помощью магнитов 4 тыс. пациентов, и в 80 % случаев получили положительный результат».

Очень распространенным в последнее время становится использование неодимовых магнитов в магнитотерапии как способе лечения симптомов и устранения боли при таких болезнях, как артрит. За их целебные свойства их иногда называют «лечебными магнитами».

Существуют электромагнитные измерители скорости движения крови, миниатюрные капсулы, которые с помощью внешних магнитных полей можно перемещать по кровеносным сосудам, чтобы расширять их, брать пробы на определённых участках пути или, наоборот, локально выводить из капсул различные медикаменты.

Исследование работы сердца осуществляют с помощью электрических датчиков, путем снятия электрокардиограммы. Электрические импульсы, вырабатываемые сердцем, создают при этом магнитное поле сердца. Она позволяет получить сведения об электрически “немых”, неработающих областях сердца.

Неодимовые магниты используют в приборах МРТ (магнитно-резонансной томографии).

В NASA магниты используются для поддержания мышечного тонуса у космонавтов во время космических полетов.

Магнетизм Земли воздействует не только на человека и весь животный мир, но и на мир растительный. Так он активизирует необходимые ферментные системы во фруктах и овощах, что делает возможным их нормальное созревание.

Заключение

Таким образом, мы изучили историю появления магнитов, их разновидности. Выяснили мнение ученых о природе магнетизма. Сделали обзор тех отраслей науки и техники, где используются магниты и электромагниты.

Осветили обширную область использования магнитов в быту. Рассмотрели вопросы воздействия магнитного поля на организм человека и возможность использования поля для диагностики и лечения различных заболеваний.

Источник: https://edu-time.ru/pub/103728

Vse-referaty
Добавить комментарий