Сила трения 2

Сила трения. Виды трения. урок. Физика 10 Класс

Сила трения 2

Сила трения в земных условиях сопутствует любым движениям тел. Она возникает при соприкосновении двух тел, если эти тела двигаются относительно друг друга. Направлена сила трения всегда вдоль поверхности соприкосновения, в отличие от силы упругости, которая направлена перпендикулярно (рис. 1, рис. 2).

Рис. 1. Отличие направлений силы трения и силы упругости

Рис. 2. Поверхность действует на брусок, а брусок – на поверхность

Существуют сухие и не сухие виды трения. Сухой вид трения возникает при соприкосновении твердых тел.

Рассмотрим брусок, лежащий на горизонтальной поверхности (рис. 3). На него действуют сила тяжести и сила реакции опоры . Подействуем на брусок с небольшой силой направленной вдоль поверхности. Если брусок не сдвигается с места, значит, приложенная сила  уравновешивается другой силой, которая называется силой трения покоя .

Рис. 3. Сила трения покоя

Сила трения покоя () противоположна по направлению и равна по модулю силе, стремящейся сдвинуть тело параллельно поверхности его соприкосновения с другим телом.

При увеличении «сдвигающей» силы  брусок остается в покое, следовательно, сила трения покоя также увеличивается. При некоторой, достаточно большой, силе  брусок придет в движение. Это означает, что сила трения покоя не может увеличиваться до бесконечности – существует верхний предел, больше которого она быть не может. Величина этого предела – максимальная сила трения покоя.

Подействуем на брусок с помощью динамометра.

Рис. 4. Измерение силы трения с помощью динамометра

Если динамометр действует на него с силой , то можно увидеть, что максимальная сила трения покоя становится больше при увеличении массы бруска, то есть при увеличении силы тяжести и силы реакции опоры. Если провести точные измерения, то они покажут, что максимальная сила трения покоя прямо пропорциональна силе реакции опоры:

,

где  – модуль максимальной силы трения покоя; N – сила реакции опоры (нормального давления);  – коэффициент трения покоя (пропорциональности). Следовательно, максимальная сила трения покоя прямо пропорциональна силе нормального давления.

Если провести опыт с динамометром и бруском постоянной массы, при этом переворачивая брусок на разные стороны (меняя площадь соприкосновения со столом), то можно увидеть, что максимальная сила трения покоя не меняется (рис. 5). Следовательно, от площади соприкосновения максимальная сила трения покоя не зависит.

Рис. 5. Максимальное значение силы трения покоя не зависит от площади соприкосновения

Более точные исследования показывают, что трение покоя полностью определяется приложенной к телу силой и формулой .

Сила трения покоя не всегда препятствует движению тела. Например, сила трения покоя действует на подошву обуви, при этом сообщая ускорение и позволяя ходить по земле без проскальзывания (рис. 6).

Рис. 6. Сила трения покоя, действующая по подошву обуви

Еще один пример: сила трения покоя, действующая на колесо автомобиля, позволяет начинать движение без пробуксовки (рис. 7).

Рис. 7. Сила трения покоя, действующая на колесо автомобиля

В ременных передачах также действует сила трения покоя (рис. 8).

Рис. 8. Сила трения покоя в ременных передачах

Если тело движется, то сила трения, действующая на него со стороны поверхности, не исчезает, такой вид трения называется трение скольжения. Измерения показывают, что сила трения скольжения по величине практически равна максимальной силе трения покоя (рис. 9).

Рис. 9. Сила трения скольжения

Сила трения скольжения всегда направлена против скорости движения тела, то есть она препятствует движению. Следовательно, при движении тела только под действием силы трения она сообщает ему отрицательное ускорение, то есть скорость тела постоянно уменьшается.

Величина силы трения скольжения также пропорциональна силе нормального давления.

где  – модуль силы трения скольжения; N – сила реакции опоры (нормального давления);  – коэффициент трения скольжения (пропорциональности).

На рисунке 10 изображен график зависимости силы трения от приложенной силы. На нем видно два различных участка. Первый участок, на котором сила трения возрастает при увеличении приложенной силы, соответствует трению покоя. Второй участок, на котором сила трения не зависит от внешней силы, соответствует трению скольжения.

Рис. 10. График зависимости силы трения от приложенной силы

Коэффициент трения скольжения приблизительно равен коэффициенту трения покоя. Обычно коэффициент трения скольжения меньше единицы. Это означает, что сила трения скольжения по величине меньше силы нормального давления.

Коэффициент трения скольжения является характеристикой двух трущихся друг о друга тел, он зависит от того, из каких материалов изготовлены тела и насколько хорошо обработаны поверхности (гладкие или шероховатые).

Происхождение сил трения покоя и скольжения обуславливается тем, что любая поверхность на микроскопическом уровне не является плоской, на любой поверхности всегда присутствуют микроскопические неоднородности (рис. 11).

Рис. 11. Поверхности тел на микроскопическом уровне

Когда два соприкасающихся тела подвергаются попытке перемещения относительно друг друга, эти неоднородности зацепляются и препятствуют этому перемещению.

При небольшой величине приложенной силы этого зацепления достаточно для того, чтобы не позволить телам смещаться, так возникает трение покоя.

Когда внешняя сила превосходит максимальное трение покоя, то зацепления шероховатостей недостаточно для удержания тел, и они начинают смещаться относительно друг друга, при этом между телами действует сила трения скольжения.

Данный вид трения возникает при перекатывании тел друг по другу или при качении одного тела по поверхности другого. Трение качения, как и трение скольжения, сообщает телу отрицательное ускорение.

Возникновение силы трения качения обусловлено деформацией катящегося тела и опорной поверхностью. Так, колесо, расположенное на горизонтальной поверхности, деформирует последнюю. При движении колеса деформации не успевают восстановиться, поэтому колесу приходится как бы все время взбираться на небольшую горку, из-за чего появляется момент сил, тормозящий качение.

Рис. 12. Возникновение силы трения качения

Величина силы трения качения, как правило, во много раз меньше силы трения скольжения при прочих равных условиях. Благодаря этому качение является распространенным видом движения в технике.

При движении твердого тела в жидкости или газе на него действует со стороны среды сила сопротивления. Эта сила направлена против скорости тела и тормозит движение (рис. 13).

особенность силы сопротивления заключается в том, что она возникает только при наличии относительного движения тела и окружающей его среды. То есть силы трения покоя в жидкостях и газах не существует. Это приводит к тому, что человек может сдвинуть даже тяжелую баржу, находящуюся на воде.

Рис. 13. Сила сопротивления, действующая на тело при движении в жидкости или газе

Модуль силы сопротивления зависит:

– от размеров тела и его геометрической формы (рис. 14);

– состояния поверхности тела (рис. 15);

– свойства жидкости или газа (рис. 16);

– относительной скорости тела и окружающей его среды (рис. 17).

Рис. 14. Зависимости модуля силы сопротивления от геометрической формы

Рис. 15. Зависимости модуля силы сопротивления от состояния поверхности тела

Рис. 16. Зависимости модуля силы сопротивления от свойства жидкости или газа

Рис. 17. Зависимости модуля силы сопротивления от относительной скорости тела и окружающей его среды

На рисунке 18 показан график зависимости силы сопротивления от скорости тела. При относительной скорости, равной нулю, сила сопротивления не действует на тело. С увеличением относительной скорости сила сопротивления сначала растет медленно, а затем темп роста увеличивается.

Рис. 18. График зависимости силы сопротивления от скорости тела

При низких значениях относительной скорости сила сопротивления прямо пропорциональна величине этой скорости:

,

где  – величина относительной скорости;  – коэффициент сопротивления, который зависит от рода вязкой среды, формы и размеров тела.

Если относительная скорость имеет достаточно большое значение, то сила сопротивления становится пропорциональной квадрату этой скорости.

,

где  – величина относительной скорости;  – коэффициент сопротивления .

Выбор формулы для каждого конкретного случая определяется опытным путем.

Тело массой 600 г равномерно движется по горизонтальной поверхности (рис. 19). При этом к нему приложена сила, величина которой равна 1,2 Н. Определить величину коэффициента трения между телом и поверхностью.

Дано: ; ;  (движение равномерное)

Найти:

Решение:

Так как тело движется равномерно, то все силы, действующие на него, взаимно уравновешены. На рисунке 19 изображены эти силы ( – сила тяжести,  – сила реакции опоры,  – сила приложенная к телу и направленная горизонтально (считаем, что тело движется влево),  – сила трения скольжения). Считаем, что эти силы отложены из одной точки.

Рис. 19. Иллюстрация к задаче

Сила тяжести уравновешена силой реакции опоры, приложенная внешняя сила уравновешивается силой трения скольжения.

Сила трения скольжения равна:

Следовательно, коэффициент трения равен:

Ответ:.

На этом уроке мы изучили разновидности сил трения. Они бывают двух типов: сухое трение (возникающее при контакте твердых тел) и не сухое (сопротивление движению тела со стороны жидкости или газа). Сухое трение, в свою очередь, делится на три разновидности: трение покоя, трение скольжения, трение качения.

Список литературы

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. – М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10–11. – М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике. – М.: Наука, 1988.
  4. А.В. Перышкин, В.В. Крауклис. Курс физики. Т. 1. – М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «festival.1september.ru» (Источник)
  2. Интернет-портал «5terka.com» (Источник)
  3. Интернет-портал «class-fizika.narod.ru» (Источник)
  4. Интернет-портал «clck.ru» (Источник)

Домашнее задание

  1. Вопросы в конце параграфа 38 (стр. 100); упражнение 7 (2) стр. 102 – Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10 (см. список рекомендованной литературы)
  2. Мальчик массой 50 кг, скатившись на санках с горки, проехал по горизонтальной дороге до остановки путь 20 м за 10 с. Найти силу трения и коэффициент трения.
  3. Упряжка собак при движении саней по снегу может действовать с максимальной силой 0,5 кН. Какой массы сани с грузом может перемещать упряжка, если коэффициент трения равен 0,1?

Источник: https://interneturok.ru/lesson/physics/10-klass/bsily-v-mehanikeb/sila-treniya-vidy-treniya

Реферат: Сила трения 2

Сила трения 2

Введение.

С трением мы сталкиваемся на каждом шагу. Вернее было бы сказать, что без трения мы и шагу ступить не можем.

Но, несмотря на ту большую роль, которую играет трение в нашей жизни, до сих пор не создана достаточно полная картина возникновения трения.

Это связано даже не с тем, что трение имеет сложную природу, а скорее с тем, что опыты с трением очень чувствительны к обработке поверхности и поэтому трудно воспроизводимы.

Когда говорят о трении, различают три несколько отличных физических явления: сопротивление при движении тела в жидкости или газе – его называют жидким трением; сопротивление, возникающее, когда тело скользит по какой-нибудь поверхности, – трение скольжения, или сухое трение; сопротивление, возникающее при качении тела, – трение качения.

История возникновения силы трения.

Талантливый человек во всем талантлив, но лишь немногие гении были гениальны во всем, что бы они ни делали, и, пожалуй, за всю историю человечества только один человек – Леонардо да Винчи заслуживает звания абсолютно универсального гения. Как художник, скульптор и инженер он превосходил своих современников.

Как ученый он обогнал свою эпоху на века. Среди бесчисленных научных достижений и первая формулировка законов трения. Леонардо (1519) утверждал, что сила трения, возникающая при контакте тела с поверхностью другого тела, пропорциональна нагрузке (силе прижатия), направлена против направления движения и не зависит от площади контакта.

Модель Леонардо была переоткрыта через 180 лет Г. Амонтоном и получила окончательную формулировку в работах Ш.О. Кулона (1781). Амонтон и Кулон ввели понятие коэффициента трения как отношения силы трения к нагрузке, придав ему значение физической константы, полностью определяющей силу трения для любой пары контактирующих материалов.

До сих пор именно эта формула

Fтр = fтрP,

где P – сила прижатия, а Fтр – сила трения, является единственной формулой, фигурирующей в учебниках по физике, а значения коэффициента трения fтр для различных материалов (сталь по стали, сталь по бронзе, чугун по коже и т.д.) входят в стандартные инженерные справочники и служат базой для традиционных технических расчетов.

Однако уже в XIX веке стало ясно, что закон Амонтона-Кулона не дает правильного описания силы трения, а коэффициенты трения отнюдь не являются универсальными характеристиками.

Прежде всего, было отмечено, что коэффициенты трения зависят не только от того, какие материалы контактируют, но и от того, насколько гладко обработаны контактирующие поверхности. Выяснилось также, что сила статического трения отличается от силы трения при движении.

Чтобы напомнить, что обычно понимается под статическим трением, представим схему простейшего эксперимента (рис. 1). Будем пытаться сдвинуть с места тело, потянув за трос с пружинным динамометром. При малом перемещении конца троса тело остается на месте: силы, развиваемой пружиной динамометра, недостаточно.

Обычно говорят, что на контактирующих поверхностях развивается сила трения, уравновешивающая приложенную силу. Постепенно увеличиваем перемещение и вместе с ним упругую силу, приложенную к телу. В какой-то момент она оказывается достаточной для того, чтобы стронуть тело с места.

Зарегистрированное в этот момент показание динамометра и называют обычно силой статического трения, характеризующего предельные возможности неподвижного (статического) сцепления тел. Если мы будем продолжать медленно вытягивать трос, то тело поедет по поверхности.

Оказывается, что регистрируемые в ходе движения показания динамометра будут не такими, как в момент страгивания. Обычно сила трения при медленном движении меньше силы страгивания, статического трения. Кулон изучал именно силу трения при медленном взаимном перемещении контактирующих тел и установил, что эта сила не зависит от величины скорости, а только от направления движения (всегда направлена против движения).

Конец XIX века ознаменовался замечательными достижениями в исследовании вязкости, то есть трения в жидкостях. Наверное, с доисторических времен известно, что смазанные жиром или даже просто смоченные водой поверхности скользят значительно легче. Смазка трущихся поверхностей применялась с момента зарождения техники, но только О. Рейнольдс в 1886 году дал первую теорию смазки.

https://www.youtube.com/watch?v=fG0ENLTPdbM

При наличии достаточно толстого слоя смазки, обеспечивающего отсутствие непосредственного контакта трущихся поверхностей, сила трения определяется только свойствами (гидродинамикой) смазочного слоя. Сила статического трогания равна нулю, а с ростом скорости сила сопротивления движению увеличивается.

Если же смазки недостаточно, то действуют все три механизма: сила статического сопротивления страгиванию с места, кулонова сила и сила вязкого сопротивления. Итак, к концу XIX века выяснилась картина зависимости силы трения от скорости, представленная графиком на рис. 2, а. Но уже на пороге XX века возникло сомнение в правильности этой картины при очень малых скоростях.

В 1902 году Штрибек опубликовал данные, свидетельствующие о том, что при отсутствии смазки сила сопротивления не падает сразу с уровня силы трогания до кулоновой силы, а возникает постепенное падение силы с ростом скорости – эффект, противоположный гидродинамической вязкости. Этот факт был многократно перепроверен в дальнейшем и теперь обычно именуется штрибек-эффектом.

Картина зависимости силы трения от скорости приобрела форму, показанную на рис. 2, б.

Быстро развивавшаяся техника XX века требовала все большего внимания к исследованию трения.

В 30-е годы исследования в области трения стали настолько интенсивными, что потребовалось выделить их как специальную науку – трибологию, лежащую на стыке механики, физики поверхностных явлений и химии (создание новых смазочных материалов – дело химиков).

Только в США в этой области работают в настоящее время более 1000 исследователей, и в мировой науке ежегодно публикуется более 700 статей. Рассказать обо всем и упомянуть всех невозможно (см., например, [1-3]), и дальше будет сделана попытка описать только общую картину и упомянуть только некоторые интересные результаты.

Современная картина трения.

Для того чтобы понять хотя бы основы трибологии, следует, прежде всего, обратиться к топографии поверхностей контактирующих между собой частей реальных механизмов. Эти поверхности никогда не являются идеально плоскими, имеют микронеровности.

Места выступов на одной поверхности отнюдь не совпадают с местами выступов на другой. Как образно выразился один из пионеров трибологии, Ф. Боуден, “наложение двух твердых тел одного на другое подобно наложению швейцарских Альп на перевернутые австрийские Альпы – площадь контакта оказывается очень малой”.

Однако при сжатии остроконечные “горные пики” пластически деформируются, и подлинная площадь контакта увеличивается пропорционально приложенной нагрузке. Именно сопротивление относительному сдвигу этих контактных зон и является основным источником трения движения.

Само сопротивление сдвигу при идеальном контакте определяется межмолекулярным взаимодействием, зависящим от природы контактирующих материалов.

Таким образом, объясняется влияние двух главных факторов: нагрузки (силы прижатия) и свойств материалов. Однако имеются два осложняющих обстоятельства. Во-первых, металлические поверхности на воздухе быстро покрываются тонкой пленкой окислов, и фактически контакт осуществляется не между чисто металлическими поверхностями, а между окисными пленками, имеющими более низкое сопротивление сдвигу.

Проникновение же любой жидкой или пастообразной смазки вообще меняет картину контакта. Во-вторых, при относительном сдвиге осуществляется не только скольжение по контактным площадкам, но и упругое деформирование выступов, пиков. Выделим схематически только два пика (практически наклон их склонов порядка 10?-20?, но для наглядности они нарисованы на рис. 3 круче).

При попытке сдвинуться в горизонтальном направлении один пик начинает прогибать другой, то есть сначала пытается сгладить дорогу, а потом уже скользить по ней. Ширина пиков мала (порядка сотых долей миллиметра), и в пределах таких микросмещений главную роль играет именно упругое сопротивление, то есть сила должна подчиняться закону Гука, быть пропорциональной смещению.

Иначе говоря, при микросмещениях контактирующие поверхности оказываются как бы связанными многочисленными пружинками. Но после того как верхний пик в ходе движения перевалит через нижний (причем оба они сплющиваются), пружинка рвется вплоть до встречи с новым препятствием.

Таким образом, после приложения продольной силы, стремящейся сдвинуть два тела, могут возникнуть следующие четыре основных режима [3]: режим I упругих микросмещений, режим II скольжения по площадкам контактов мягкого поверхностного слоя (окисных пленок), режим III, когда при большей скорости выдавливаемая жидкая смазка создает подъемную силу, нарушающую большую часть прямых контактов и тем самым снижающую силу трения, режим IV, когда прямые контакты вообще исчезают, одно тело “плывет” над другим по смазочному слою и с увеличением скорости возрастает вязкое сопротивление.

Этим качественным представлениям соответствует график зависимости коэффициента трения от скорости, представленный на рис. 2, б.

Заметим, что зона спадания коэффициента трения (зона штрибек-эффекта) обычно очень мала, порядка мм/с.

Если же смазка не вводится искусственно, то увеличение трения с ростом скорости почти незаметно и мы возвращаемся к закону Амонтона-Кулона, за исключением зоны очень малых скоростей (рис. 2, в).

Сила трения.

Трением называется сопротивление соприкасающихся тел движению друг относительно друга. Трением сопровождается каждое механическое движение, и это обстоятельство имеет существенное следствие в современном техническом прогрессе.

Сила трения есть сила сопротивления движению соприкасающихся тел друг относительно друга.

Трение объясняется двумя причинами: неровностями трущихся поверхностей тел и молекулярным взаимодействием между ними. Если выйти за пределы механики, то следует сказать, что силы трения имеют электромагнитное происхождение, как и силы упругости.

Каждая из указанных выше двух причин трения в разных случаях проявляет себя в разной мере. Например, если соприкасающиеся поверхности твердых трущихся тел имеют значительные неровности, то основная слагаемая в возникающей здесь силе трения будет обусловлена именно данным обстоятельством, т.е.

неровностью, шероховатостью поверхностей трущихся тел.

Тела, перемещающиеся с трением друг относительно друга, должны соприкасаться поверхностями или двигаться одно в среде другого. Движения тел друг относительно друга может и не возникнуть из-за наличия трения, если движущая сила меньше максимальной силы трения покоя.

Если соприкасающиеся поверхности твердых трущихся тел отлично отшлифованы и гладки, то основная слагаемая возникающей при этом силы трения будет определяться молекулярным сцеплением между трущимися поверхностями тел.

Рассмотрим более детально процесс возникновения сил трения скольжения и покоя на стыке двух соприкасающихся тел. Если посмотреть на поверхности тел под микроскопом, то будут видны микронеровности, которые мы изобразим в увеличенном виде (рис. 1, а).

Рассмотрим взаимодействие соприкасающихся тел на примере одной пары неровностей (гребень и впадина) (рис. 3, б).

В случае, когда сила, пытающаяся вызвать движение, отсутствует, характер взаимодействия на обоих склонах микронеровностей аналогичный.

При таком характере взаимодействия все горизонтальные составляющие силы взаимодействия уравновешивают друг друга, а все вертикальные просуммируются и составляют силу N (реакция опоры) (рис. 2, а).

а

б

Рис.1

Иная картина взаимодействия тел получается, когда на одно из тел начинает действовать сила. В этом случае точки контакта будут преимущественно на левых по рисунку «склонах». Первое тело будет давить на второе. Интенсивность этого давления характеризуется силой R”.

Второе тело в соответствии с третьим законом Ньютона будет действовать на первое тело. Интенсивность этого действия характеризуется силой R (реакция опоры).

Силу R можно разложить на составляющие: силу N, направленную перпендикулярно поверхности соприкосновения тел, и силу Fсц, направленную против действия силы F (рис. 2, б).

а

б

Рис.2

После рассмотрения взаимодействия тел следует обратить внимание на два момента.

1) При взаимодействии двух тел в соответствии с третьим законом Ньютона возникают две силы R и R”; силу R для удобства ее учета при решении задач мы раскладываем на составляющие N и Fсц (Fтр в случае движения).

2) Силы N и FTp имеют одну и ту же природу (электромагнитное взаимодействие); иначе и быть не могло, так как это составляющие одной и той же силы R.

Весьма важное значение в современной технике для снижения вредного влияния сил трения имеет замена трения скольжения трением качения. Сила трения качения определяется как сила, необходимая для равномерного прямолинейного качения тела по горизонтальной плоскости. Опытом установлено, что сила трения качения вычисляется по формуле:

где F—сила трения качения; к—коэффициент трения качения; Р—сила давления катящегося тела на опору и R—радиус катящегося тела.

Из практики очевидно, из формулы ясно, что чем больше радиус катящегося тела, тем меньшее препятствие оказывают ему неровности поверхности опоры.

Заметим, что коэффициент трения качения, в отличие от коэффициента трения скольжения, именованная величина и выражается в единицах длины — метрах.

Заменяется трение скольжения трением качения, в необходимых и возможных случаях, заменой подшипников скольжения на подшипники качения.

Существует внешнее и внутреннее трение (иначе называемое вязкостью). Внешним называют такой вид трения, при котором в местах соприкосновения твердых тел возникают силы, затрудняющие взаимное перемещение тел и направленные по касательной к их поверхностям.

Внутренним трением (вязкостью) называется вид трения, состоящий в том, что при взаимном перемещении. Слоев жидкости или газа между ними возникают касательные силы, препятствующие такому перемещению.

Внешнее трение подразделяют на трение покоя (статическое трение) и кинематическое трение. Трение покоя возникает между неподвижными твердыми телами, когда какое-либо из них пытаются сдвинуть с места. Кинематическое трение существует между взаимно соприкасающимися движущимися твердыми телами. Кинематическое трение, в свою очередь, подразделяется на трение скольжения и трение качения.

В жизни человека силы трения играют важную роль. В одних случаях он их использует, а в других борется с ними. Силы трения имеют электромагнитную природу.

Виды сил трения.

Силы трения имеют электромагнитную природу, т.е. в основе сил

трения лежат электрические силы взаимодействия молекул. Они

зависят от скорости движения тел относительно друг друга.

Существует 2 вида трения: сухое и жидкое.

1.Жидкое трение – это сила, возникающая при движении твёрдого

тела в жидкости или газе или при движении одного слоя жидкости

(газа) относительно другого и тормозящая это движение.

В жидкостях и газах сила трения покоя отсутствует.

При малых скоростях движения в жидкости (газе):

Fтр= k1v,

где k1– коэффициент сопротивления, зависящий от формы, размеров

тела и от св-в среды. Определяется опытным путём.

При больших скоростях движения:

Fтр= k2v,

где k2– коэффициент сопротивления.

2.Сухое трение – это сила, возникающая при непосредственном

соприкосновении тел, и всегда направлена вдоль поверхностей

соприкосновения электромагнитных тел именно разрывом молекулярных связей.

Трение покоя.

Рассмотрим взаимодействие бруска с поверхностью стола.

Поверхность, соприкасающихся тел не является абсолютно ровной.

Наибольшая сила притяжения возникает между атомами веществ, находящимися на минимальном расстоянии друг от друга, то есть на микроскопических выступах.

Суммарная сила притяжения атомов, соприкасающихся тел столь значительна, что даже под действием внешней силы , приложенной к бруску параллельно поверхности его соприкосновения со столом, брусок остаётся в покое.

Это означает, что на брусок действует сила равная по модулю внешней силе, но противоположно направленная. Эта сила является силой трения покоя.

Когда приложенная сила достигает максимального критического значения, достаточного для разрыва связей между выступами, брусок начинает скользить по столу.

Максимальная сила трения покоя не зависит от площади соприкосновения поверхности.

По третьему закону Ньютона сила нормального давления равна по модулю силе реакции опоры N.

Максимальная сила трения покоя пропорциональна силе нормального давления:

,

где – коэффициент трения покоя.

Коэффициент трения покоя зависит от характера обработки поверхности и от сочетания материалов, из которых состоят соприкасающиеся тела. Качественная обработка гладких поверхностей контакта приводит к увеличению числа притягивающихся атомов и соответственно к увеличению коэффициента трения покоя.

Наблюдения показывают, что сила трения покоя всегда направлена противоположно действующей на тело внешней силе, стремящейся привести это тело в движение ().До определенного момента сила трения покоя увеличивается с возрастанием внешней силы, уравновешивая последнюю. Максимальное значение силы трения покоя пропорционально модулю силы Fд давления, производимого телом на опору.

По третьему закону Ньютона сила Fд давления тела на опору равна по модулю силе N реакции опоры. Поэтому максимальная сила трения покоя пропорциональна силе реакции опоры. Для модулей этих сил справедливо следующее соотношение:

Fп=fпN, (2.19)

где fп – безразмерный коэффициент пропорциональности, называемый коэффициентом трения покоя. Значение этого коэффициента зависит от материала и состояния трущихся поверхностей.

Определить значение коэффициента трения покоя можно следующим образом. Пусть тело (плоский брусок) лежит на наклонной плоскости АВ (рис. 23). На него действуют три силы: сила тяжести F, сила трения покоя Fп и сила реакции опоры N. Нормальная составляющая Fп силы тяжести представляет собой силу давления Fд, производимого телом на опору, т. е.

FН=Fд. (2.20)

Тангенциальная составляющая Fт силы тяжести представляет собой силу, стремящуюся сдвинуть тело вниз по наклонной плоскости.

При малых углах наклона a сила Fт уравновешивается силой трения покоя Fп и тело на наклонной плоскости покоится (сила N реакции опоры по третьему закону Ньютона равна по модулю и противоположна по направлению силе Fд, т. е. уравновешивает ее).

Будем увеличивать угол наклона a до тех пор, пока тело не начнет скользить вниз по наклонной плоскости. В этот момент

Fт=Fпmax (2.21)

Подставив в формулу (2.19) выражения (2.20) и (2.21), получим

fп=Fт/Fн (2.22)

Из рис. 23 видно, что

Fт=Fsin = mg sin; Fн=Fcos = mg cos.

Подставив эти значения Fт И Fн в формулу (2.22), получим

fн=sin/cos=tg. (2.23)

Измерив угол , при котором начинается скольжение тела, можно по формуле (2.25) вычислить значение коэффициента трения покоя fп.

Рис. 1.

Рис. 2. Трение покоя.

Трения скольжения.

Трение скольжения возникает при относительном перемещении соприкасающихся тел.

Сила трения скольжения всегда направлена в сторону, противоположную относительной скорости соприкасающихся тел.

Когда одно тело начинает скользить по поверхности другого тела, связи между атомами (молекулами) первоначально неподвижных тел разрываются, трение уменьшается.

При дальнейшем относительном движении тел постоянно образуются новые связи между атомами. При этом сила трения скольжения остаётся постоянной, несколько меньшей силы трения покоя.

Как и максимальная сила трения покоя, сила трения скольжения пропорциональна силе нормального давления и, следовательно, силе реакции опоры:

,

где – коэффициент трения скольжения (), зависящий от свойств соприкасающихся поверхностей.

Рис. 3. Трение скольжения

Трение качения.

Одно из самых гениальных изобретений человечества – колесо. Оно использовалось для транспортировки грузов ещё 5000 лет назад. Хорошо известно, что несравненно легче везти груз на тележке, чем тащить его.

Когда колесо катиться без проскальзывания по поверхности, молекулярные связи разрываются при подъёме участков колеса быстрее, чем при скольжении. Поэтому сила трения качения значительно меньше силы трения скольжения.

Сила трения качения пропорциональна силе реакции опоры:

,

где – коэффициент трения качения.

Коэффициент трения качения много меньше коэффициента трения скольжения:

Источник: https://www.bestreferat.ru/referat-272814.html

Сила трения – виды, формула и примеры расчета

Сила трения 2

Сила трения появляется, когда две поверхности соприкасаются и движутся относительно друг друга. Процесс изучает физика, в частности механика. Она рассматривает основные законы, которым поддаются тела при их движении и взаимодействии, выясняет причины, влияющие на изменение положения предметов.

Определение и природа силы трения

Сила трения Fтр возникает при касании двух тел. Она создает препятствия для их дальнейшего движения. 

Это происходит при взаимодействии атомов и молекул, из которых состоят предметы. Поэтому природа ее появления – электромагнитные волны. Она действует в двух направлениях, направлена на оба тела. 

При этом ее значение по модулю не изменяется. Если на одно из двух соприкасающихся тел действует сила, то она оказывает влияние и на другое.

На предмет, остающийся без движения, влияет сила трения покоя. Пока ее значение не превысит внешнее вмешательство, пытающееся сместить предмет, он не изменит положение. 

Когда же ее величина возрастет до определенного предела, произойдет перемещение в новое место. Тогда появляется сила трения скольжения, ее направление противоположно смещению предмета.

Благодаря действию трения невозможно перемещаться вечно. Движение закончится через определенное время. Если же внешняя сила вновь превысит значение трения покоя, то перемещение возобновится.

Виды силы трения

Основные виды силы трения:

  1. Покоя. Она сопротивляется внешним факторам, пытающимся сдвинуть тело. При их отсутствии ее значение приравнивают к нулю.

  2. Скольжения. Она находится в прямой зависимости от коэффициента трения и значения силы, с которой поверхность оказывает давление на тело. Ее направление действия всегда перпендикулярно поверхности. Она обычно ниже, чем максимальная сила трения покоя.

  3. Качения. Она возникает, когда одно тело катится по поверхности другого. Например, при соприкосновении колеса едущего велосипеда с дорогой или при работе подшипникового механизма.

    Она оказывает гораздо меньшее действие, чем трение скольжения, если остальные условия считать неизменными. Ее открытие стало незаменимым для техники.

    Колеса и круглые детали, вращающиеся и меняющие положение, являются основой многих механизмов и работы транспортных средств.

  4. Верчения. Она появляется, когда один предмет начинает вращаться по поверхности другого.

Само трение может быть нескольких видов:

  1. Сухим. Проявляется при соприкосновении твердых поверхностей. На них не наблюдаются другие материалы и слои. Такое в природе и жизни встречается крайне редко.

  2. Вязким. Его еще называют жидкостным. Возникает при взаимодействии твердого тела с жидкостью или газом. Они могут течь мимо неподвижного предмета. Или он перемещается в жидкой или газообразной субстанции. Например, лодку тянут на канате по реке. Тело заставляет перемещаться верхний слой жидкости или газа. Словно тянет его за собой.

    Он в свою очередь действует на другой слой, расположенный ниже. Чем дальше от тела, тем ниже скорость движения слоев. Это происходит из-за уменьшения влияния твердого предмета. Между слоями возникает сила трения, так как тела движутся относительно друг друга.

    Она приводит к их торможению, а значит и действует на твердое тело, останавливая его. Температура определяет степень вязкости веществ. Например, она снижается при нагревании масла. Это наглядно видно на работе автомобильного мотора.

    Когда машина долго находилась на холоде, двигатель нужно сначала разогреть, чтобы увеличить скорость его вращения. У газов обратная зависимость. Вязкость растет с увеличением температуры.

  3. Смешанным. Оно наблюдается, когда между телами, соприкасающимися поверхностями, есть слой смазки.


Также трение разделяют на внутреннее и внешнее. Последнее возникает при взаимодействии твердых тел. Значит к нему можно отнести сухое трение. 

Внутреннее же характеризуется вязкостью. Именно при взаимодействии жидкостей или газа смещение происходит внутри одного тела, когда слои движутся относительно друг друга.

Как найти силу трения

Чтобы найти силу трения, нужно знать коэффициент трения k, зависящий от свойств поверхности. Это постоянная величина, значение которой берется из таблиц. 

Также понадобится сила реакции опоры N. Нужная величина определяется произведением двух значений:

Fтр = k * N

Буквой k обозначается коэффициент. Также можно встретить символ µ. Обычно он находится в пределах от 0,1 до 1. 

Например, для резины, перемещающейся по сухому асфальту, при движении он колеблется от 0,5 до 0,8. При скольжении металла по дереву – 0,4, железа по чугуну – 0,18.

Сила реакции опоры не отличается от величины силы тяжести, зависящей от веса тела. Поэтому ее значение равно произведению массы тела (m) на ускорение свободного падения (g).

N = m * g

Это постоянная величина, составляющая 9,8 м/с². Это правило действует, когда приходится иметь дело с горизонтальной поверхностью. Сила тяжести и реакция опоры уравновешивают друг друга. Поэтому их считают равными величинами.

Если же происходит движение по наклонной плоскости, ход рассуждений несколько меняется. На предмет по-прежнему действуют силы тяжести и реакция опоры, но не в одном направлении.

При знании угла наклона плоскости к горизонту, формула трансформируется и приобретает следующий вид:

N = k * m *·g *·cosα

Здесь необходимо руководствоваться тем, что косинус это отношение катета, прилежащего к углу, к гипотенузе треугольника. Это один из тех случаев, доказывающих тесную взаимосвязь физики и тригонометрии.

Пример решения задачи

Задача, на применение полученных знаний, связанных с силой трения, поможет закрепить материал.

Условие задачи. На полу стоит коробка весом 7 кг. Коэффициент трения между ней и полом составляет 0,3. К коробке прикладывают силу, равную 14 Н. Сдвинется ли она с места?

Решение.

Коробка находится на горизонтальной плоскости. Она подвержена действию силы тяжести, которую уравнивает реакция опоры. Они направлены перпендикулярно коробке и полу. Значит, для определения силы реакции опоры, нужно умножить массу коробки на ускорение:

N = m * g;

N = 10 кг * 9,8 м/с² = 98 кг * м/с² = 98 Н;

Fтр = k * N;

Fтр = 0,3·* 98Н = 29,4 Н.

Ответ: полученное значение превышает усилия, приложенные к коробке со стороны, так как 29,4 Н > 14 Н. Значит, она останется на первоначальном месте.

Сила трения присутствует в жизни постоянно. Она мешает предметам сдвинуться с места и противится их длительному скольжению и перемещению. Ее значение зависит от поверхностей, с которыми приходится соприкасаться, их свойств и характеристик. 

Площадь соприкосновения не учитывается, зато имеет значение положение тела. Например, сила, возникающая при движении автомобиля по ровной поверхности, отличается от величины при перемещении по горной местности, расположенной под углом к горизонту. А если машине приходится двигаться на мокрой дороге, то значение снова меняется.

Источник: https://nauka.club/fizika/sila-treniya.html

2.10. Силы трения

Сила трения 2

Силы трения

1)появляются приперемещении соприкасающихся тел илиих частей друг относительно друга.

2) направленыпокасательной к трущимся поверхностямтак, чтобы противодействоватьотносительному смещению этих поверхностей.

Трение, возникающеепри относительном перемещении двухсоприкасающихся тел, называетсявнешним

Трение междучастями одного и того же сплошного теланазываетсявнутренним.

Трениемеждутвердым телом и жидкой или газообразнойсредой, а также между слоями такой средыназывается вязким.

Трение междуповерхностями двух тел при отсутствиикакой-либо прослойки,например, смазки между ними, называетсясухим.

Различают трениескольжения и трение качения.

СУХОЕ ТРЕНИЕ.В случае сухого трения сила трениявозникает не только при скольженииодной поверхности по другой, но и припопытках вызвать такое скольжение. Вэтом случае она называется силойтрения покоя.

Рассмотрим двасоприкасающихся тела 1 и 2, из которыхпоследнее закреплено неподвижно(рис.2.9):

Тело 1 прижимаетсяк телу 2 с силой ,направленной по нормали к поверхностисоприкосновения тел. Она называетсясилой нормального давленияи можетбыть обусловлена, например, весом тела.

Попытаемсяпереместить тело 1, подействовав на неговнешней силой .Из демонстрации 3 видно, что

– для каждойконкретной пары тел и каждого значениясилы нормального давления имеетсяопределенное минимальное значениесилы ,при котором тело 1 удается сдвинуть сместа.

– при значенияхвнешней силы, заключенных в пределах ,тело остается в покое, силауравновешивается равной ей по величинеи противоположно направленной силой трения покоя. Величина– это наибольшее значение силы тренияпокоя.

По третьему законуНьютона на тело 2 также действует силатрения покоя ,равная по величине и имеющая противоположное направление.

Если внешняя силапревзойдет по модулю,то тело начинает скользить.

Егоускорение определяется результирующейдвух сил: внешнейисилы трения скольжения ,величина которой зависит от скоростискольжения. Характер этой зависимостиопределяется природой и состояниемтрущихся поверхностей. Наиболее частовстречающийся вид этой зависимостипредставлен на рис.2.10.

Из экспериментаизвестно, что максимальнаясила трения покоя, а также сила тренияскольжения

  • не зависят от площади соприкосновения трущихся тел
  • пропорциональны величине силы нормального давления, прижимающей трущиеся поверхности друг к другу: ,

где – коэффициент трения.

ВЯЗКОЕ ТРЕНИЕ.Сила вязкого трения являетсяфункцией скорости и обращается в нольодновременно со скоростью.

Помимо собственносил трения, при движении тел в жидкойили газообразной среде возникают силысопротивления среды,которые могут значительно превосходитьсилы трения.

Суммарная силатрения и сопротивления среды

  • при небольших скоростях растет линейно со скоростью ,
  • при больших скоростях она пропорциональна квадрату скорости ,

где– орт скорости

2.11. Гравитационные силы. Закон всемирного тяготения

Всетела в природе взаимно притягивают другдруга. Закон, которому подчиняется этопритяжение, был установлен Ньютоном иносит названиезаконавсемирного тяготения:сила, скоторой две материальные точки притягиваютдруг друга, пропорциональна массам этихточек и обратно пропорциональна квадратурасстояния междуними:

Здесь – гравитационнаяпостоянная.

Сила направленавдоль прямой, проходящей черезвзаимодействующие материальныеточки(рис.2.11).

В векторнойформесила, с которой вторая материальнаяточка действует на первую, равна :

(2.21)

где –единичныйвектор,имеющий направление от первой материальнойточки ко второй (рис.2.11).

Замениввекторвектором ,получим силу,действующую на вторую материальнуюточку.

Для определениясилы взаимодействия протяженныхтел их нужно

1.разбить на элементарные массы ,каждую из которых можно было бы принятьза материальную точку (рис.2.12).

Согласно выражению(2.23), -я элементарная масса тела 1 притягиваетсяк-й элементарной массе тела 2 с силой

(2.22)

где –расстояниемежду элементарными массами.

2. Просуммировав(2.22) по всем значениям индекса ,получим

силу, действующуюсо стороны тела 2 на принадлежащую телу1 элементарную массу :

(2.23)

3. Далеепросуммировав (2.23) по всем значенияминдекса ,т.е. сложив силы, приложенные ко всем элементарным массам первого тела,получим

силу, с которойтело 2 действует на тело 1:

Это суммированиесводится к интегрированию и являетсяочень сложной математической задачей.В ряде практических задач взаимодействиетел сводится к взаимодействию материальныхточек.

Источник: https://studfile.net/preview/1966745/page:5/

Сила трения – материалы для подготовки к ЕГЭ по Физике

Сила трения 2

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: силы в механике, сила трения, коэффициент трения скольжения.

Сила трения – это сила взаимодействия между соприкасающимися телами, препятствующая перемещению одного тела относительно другого. Сила трения всегда направлена вдоль поверхностей соприкасающихся тел.

В школьной физике рассматриваются два вида трения.

1.Сухое трение. Оно возникает в зоне контакта поверхностей твёрдых тел при отсутствии между ними жидкой или газообразной прослойки.
2.Вязкое трение. Оно возникает при движении твёрдого тела в жидкой или газообразной среде или при перемещении одного слоя среды относительно другого.

Сухое и вязкое трение имеют разную природу и отличаются по свойствам. Рассмотрим эти виды трения по отдельности.

Сухое трение

Сухое трение может возникать даже при отсутствии относительного перемещения тел.

Так, тяжёлый диван остаётся неподвижным при слабой попытке сдвинуть его с места: наша сила, приложенная к дивану, компенсируется силой трения, возникающей между диваном и полом.

Сила трения, которая действует между поверхностями покоящихся тел и препятствует возникновению движения, называется силой трения покоя.

Почему вообще появляется сила трения покоя? Соприкасающиеся поверхности дивана и пола являются шероховатыми, они усеяны микроскопическими, незаметными глазу бугорками разных форм и размеров. Эти бугорки зацепляются друг за друга и не дают дивану начать движение. Сила трения покоя, таким образом, вызвана силами электромагнитного отталкивания молекул, возникающими при деформациях бугорков.

При плавном увеличении усилия диван всё ещё не поддаётся и стоит на месте – сила трения покоя возрастает вместе с увеличением внешнего воздействия, оставаясь равной по модулю приложенной силе. Это понятно: увеличиваются деформации бугорков и возрастают силы отталкивания их молекул.

Наконец, при определённой величине внешней силы диван сдвигается с места. Сила трения покоя достигает своего максимально возможного значения. Деформации бугорков оказываются столь велики, что бугорки не выдерживают и начинают разрушаться. Возникает скольжение.

Сила трения, которая действует между проскальзывающими поверхностями, называется силой трения скольжения. В процессе скольжения рвутся связи между молекулами в зацепляющихся бугорках поверхностей. При трении покоя таких разрывов нет.

Объяснение сухого трения в терминах бугорков является максимально простым и наглядным. Реальные механизмы трения куда сложнее, и их рассмотрение выходит за рамки элементарной физики.

Сила трения скольжения, приложенная к телу со стороны шероховатой поверхности, направлена противоположно скорости движения тела относительно этой поверхности.

При изменении направления скорости меняется и направление силы трения.

Зависимость силы трения от скорости – главное отличие силы трения от сил упругости и тяготения (величина которых зависит только от взаимного расположения тел, т. е. от их координат).

В простейшей модели сухого трения выполняются следующие законы. Они являются обобщением опытных фактов и носят приближённый характер.

1. Максимальная величина силы трения покоя равна силе трения скольжения.
2. Абсолютная величина силы трения скольжения прямо пропорциональна силе реакции опоры:

.

Коэффициент пропорциональности – называется коэффициентом трения.

3. Коэффициент трения не зависит от скорости движения тела по шероховатой поверхности.
4. Коэффициент трения не зависит от площади соприкасающихся поверхностей.

Этих законов достаточно для решения задач.

Задача. На горизонтальной шероховатой поверхности лежит брусок массой кг. Коэффициент трения . К бруску приложена горизонтальная сила . Найти силу трения в двух случаях: 1) при 2) при .

Решение.Сделаем рисунок, расставим силы. Силу трения обозначаем (рис. 1).

Рис. 1. К задаче

Запишем второй закон Ньютона:

(1)

Вдоль оси брусок не совершает движения, . Проектируя равенство (1) на ось , получим: , откуда .

Максимальная величина силы трения покоя (она же сила трения скольжения) равна

.

1) Сила меньше максимальной силы трения покоя. Брусок остаётся на месте, и сила трения будет силой трения покоя:
2) Сила больше максимальной силы трения покоя. Брусок начнёт скользить, и сила трения будет силой трения скольжения: .

Вязкое трение

Сила сопротивления, возникающая при движении тела в вязкой среде (жидкости или газе), обладает совершенно иными свойствами.

Во-первых, отсутствует сила трения покоя. Например, человек может сдвинуть с места плавающий многотонный корабль, просто потянув за канат.

Во-вторых, сила сопротивления зависит от формы движущегося тела. Корпус подводной лодки, самолёта или ракеты имеет обтекаемую сигарообразную форму – для уменьшения силы сопротивления. Наоборот, при движении полусферического тела вогнутой стороной вперёд сила сопротивления очень велика (пример – парашют).

В третьих, абсолютная величина силы сопротивления существенно зависит от скорости. При малых скоростях движения сила сопротивления прямо пропорциональна скорости:

.

При больших скоростях сила сопротивления прямо пропорциональна квадрату скорости:

.

Например, при падении в воздухе зависимость силы сопротивления от квадрата скорости имеет место уже при скоростях около нескольких метров в секунду. Коэффициенты и зависят от формы и размеров тела, от физических свойств поверхности тела и вязкой среды.

Так, парашютист при затяжном прыжке не набирает скорость безгранично, а с определённого момента начинает падать с установившейся скоростью, при которой сила сопротивления становится равна силе тяжести:

.

Отсюда установившаяся скорость:

(2)

Задача. Два металлических шарика, одинаковых по размеру и различных по массе, падают без начальной скорости с одной и той же большой высоты.

Какой из шариков быстрее упадёт на землю – лёгкий или тяжёлый?
Решение. Из формулы (2) следует, что у тяжёлого шарика установившаяся скорость падения больше.

Значит, он дольше будет набирать скорость и потому быстрее достигнет земли.

Источник: https://ege-study.ru/ru/ege/materialy/fizika/sila-treniya/

Сила трения

Сила трения 2

Автор
Курносов Валерий Михайлович 146 статей

Сила трения – сила механического сопротивления, возникающая в плоскости соприкосновения двух прижатых друг к другу тел при их относительном перемещении.

Сила сопротивления, действующая на тело, направлена противоположено относительному перемещению данного тела.

Сила трения возникает по двум причинам: 1) первая и основная причина заключается в том, что в местах соприкосновения молекулы веществ притягиваются друг к другу, и для преодоления их притяжения требуется совершить работу. Соприкасающиеся поверхности касаются друг друга лишь в очень небольших по площади местах.

Их суммарная площадь составляет 0,01÷0,0010,01 \div 0,001 от общей (кажущейся) площади соприкосновения. При скольжении площадь реального соприкосновения не остается неизменной. Сила трения (скольжения) будет изменяться в процессе движения.

Если тело, которое скользит, прижать сильнее к телу, по которому происходит скольжение, то вследствие деформации тел площадь пятен соприкосновения (и сила трения) увеличится пропорционально прижимающей силе.

$$F_\text{тр} \sim F_\text{приж}$$

2) вторая причина возникнове ния силы трения – это наличие шероховатостей (неровностей) поверхностей, и деформация их при движении одного тела по поверхности другого. Глубина проникновения (зацепления) шероховатостей зависит от прижимающей силы, а от этого зависит и величина деформаций. Последние, в свою очередь, определяют величину силы трения: Fтр∼FприжF_\mathrm{тр} \sim F_\mathrm{приж}.

При относительном скольжении обе причины имеют место, потому характер взаимодействия имеет вид простого соотношения:

Fтр=μN -\boxed{F_\mathrm{тр} =\mu N}\ -сила трения скольжения (формула Кулона – Амонтона), где

μ -\mu\ – коэффициент трения скольжения,

N -N\ – сила реакции опоры, равная прижимающей силе.

Величина коэффициента трения различна для разных комбинаций трущихся веществ даже при одинаковой их обработке (силы притяжения и упругие свойства зависят от рода вещества).

Если между трущимися поверхностями будет находится смазка, то сила притяжения изменится заметным образом (будут притягиваться другие молекулы, и сила трения скольжения частично заменится силой вязкого трения, которую мы рассмотрим ниже).

Если на тело, лежащее на горизонтальной поверхности, действует горизонтальная сила F→\vec F, то движение будет вызвано этой силой только в том случае, когда она станет больше некоторого значения (μN)(\mu N). До начала движения внешняя сила скомпенсирована силой трения покоя.

Рис. 13

Сила трения покоя всегда равна внешней силе, параллельной поверхности, и возникает по причине притяжения между молекулами в областях пятен соприкосновения и деформации шероховатостей.

Сила трения покоя различна в разных участках поверхности по которой будет происходить движение. Если тело долго лежит на поверхности, то вследствие вибраций (они всегда присутствуют на поверхности Земли) площадь пятен соприкосновения незначительно увеличится.

Поэтому для начала движения придётся преодолеть немного большую силу трения, чем сила трения скольжения. Данное явление называется явлением застоя. С этим явлением мы сталкиваемся, например передвигая мебель в комнате.

(На рисунке 13 превосходство трения покоя над трением скольжения сильно преувеличено).

Силой трения покоя мы пользуемся для перемещения на лыжах или просто при ходьбе.

Рассмотренные виды силы трения относятся к сухому трению или внешнему. Но есть еще один вид силы трения – вязкое трение.

При движении тела в жидкости или газе происходят достаточно сложные процессы обмена молекулами между слоями обтекающей жидкости или газа. Эти процессы называют процессами переноса.

При небольших скоростях движения тела относительно газа или жидкости сила сопротивления будет определяться выражением:

Fтр=6πηrv -\boxed{F_\mathrm{тр} = 6\pi \eta r v}\ – закон Стокса для шара, где

η -\eta\ – вязкость вещества, в котором движется тело;

r -r\ – средний поперечный размер (радиус) тела;

v -v\ – относительная скорость тела;

6π -6\pi\ – коэффициент, соответствующей сферической форме тела.

Вывод о величине скорости (большая она или маленькая) можно сделать, определив безразмерный коэффициент, называемый числом Рейнольдса:

Re=ρrvη -\boxed{Re = \frac{\rho r v}{\eta}}\ – число Рейнольдса, где

ρ -\rho\ – плотность вещества, в которой движется тело.

Если Re1700Re > 1700, то движение газа (жидкости) вокруг тела турбулентное (с завихрениями), и скорости можно считать большими.

В последнем случае на образование вихрей тратится большая часть кинетической энергии тела, а значит, сила трения становится большей, а зависимость перестаёт быть линейной.

Fтр=kv2ρS -\boxed{F_\mathrm{тр} = kv2\rho S}\ – сила вязкого трения при больших скоростях, где

S -S\ – площадь поперечного сечения тела,

k -k\ – постоянная величина, зависящая от поперечных размеров тела.

Часто последнюю формулу можно видеть в виде:

\[F_\text{тр} = \beta v2.\]

Число Рейнольдса, выбранное равным 17001700, в действительности определяется конкретной задачей (условиями) и может принимать другие значения того же порядка.

Объясняется это тем, что зависимость силы вязкого трения от скорости носит сложный характер: при некотором значении скорости линейная зависимость начинает нарушаться, а при некотором значении скорости эта зависимость становится квадратичной. 

Рис. 14

В промежутке от v1v_1 до v2v_2 степень принимает дробные значения (рис. 14) . Число Рейнольдса характеризует состояние динамической системы, при котором движение слоёв остаётся ламинарным, и сильно зависит от внешних условий.

К примеру: стальной шар, двигаясь в воде вдали от границ жидкости (в океане, озере) сохраняет ламинарным движение слоёв при Re=1700Re = 1700, а тот же шар, движущийся в вертикальной трубе немного большего, чем шар, радиуса, заполненной водой, уже при Re=2Re=2 вызовет появление завихрений воды вокруг шара.

(Отметим, что число Рейнольдса не единственное, применяемое для описания подобного движения. Например, применяют ещё числа Фруда и Маха.)

Из-за такой сложной зависимости силы сопротивления от размеров, формы тела и его скорости рассчитать с необходимой точностью силу сопротивления невозможно. Потому приходится создавать макеты летательных аппаратов и измерять силу сопротивления опытным путём, продувая воздух в аэродинамических трубах.

Пример 7. Сила сопротивления воздуха, действующая на капли тумана, пропорциональна произведению скорости на радиус капель: F=krvF = krv. Капли радиуса 0,1 мм0,1\ \text{мм}, падая с большой высоты, у земли имеют скорость около 1 м/с1\ \mathrm{м}/\mathrm{с}. Какую скорость будут иметь капли, радиус которых в два раза меньше? В десять раз меньше?

Решение: Капля падает с постоянной скоростью, т. к. сила тяжести скомпенсирована силой вязкого трения о воздух: krv=mgkrv = mg или krv=ρ43πr3gkrv = \rho \frac 43 \pi r3 g, откуда v=4ρπg3kr2v = \frac{4\rho\pi g}{3k}r2.

Из полученного результата следует, что скорость капли прямо пропорциональна квадрату радиуса. Если радиус капли уменьшится в два раза, то скорость её падения уменьшится в четыре раза, и составит v1≈0,25 м/сv_1 \approx 0,25\ \text{м}/\text{с}; а если радиус окажется в десять раз меньше, то скорость будет в сто раз меньше, т. е. v2≈0,01 м/сv_2 \approx 0,01\ \mathrm{м}/\mathrm{с}.

Задача любопытна тем, что может объяснить почему облака не падают. Ведь облака – это туман, который не падает из-за наличия восходящих потоков воздуха. На нижней границе облака находятся наиболее крупные капли.

Поднимаясь, скорость потока уменьшается, т. к. он совершает работу над встретившимся воздухом и увеличивает свою потенциальную энергию. Раз скорость потока в верхней части облака меньше, то и размер капель там тоже меньше.

Капли «висят» над поверхностью земли на постоянной высоте.

Источник: https://zftsh.online/articles/824

Vse-referaty
Добавить комментарий