Синергетика

Синергетика и законы природы. Синергетика как наука. Синергетика как научный подход и метод. Универсальная теория эволюции – синергетика

Синергетика

Синергетика и законы природы. Синергетика как наука. Синергетика как научный подход и метод. Универсальная теория эволюции – синергетика.

Синергетика. Наука синергетика.

Синергетика, или теория сложных систем, – это междисциплинарное направление науки, изучающее общие закономерности явлений и процессов в сложных неравновесных системах (физических, химических, биологических, экологических, социальных и других) на основе присущих им принципов самоорганизации.

Синергетика является междисциплинарным подходом, поскольку принципы, управляющие процессами самоорганизации, представляются одними и теми же безотносительно природы систем, и для их описания должен быть пригоден общий математический аппарат.

Синергетика. История синергетики. История современной синергетики.

Автором термина «синергетика», предложившим его впервые является американский архитектор и изобретатель Ричард Бакминстер Фуллер.

В течение своей жизни Ричард Фуллер задавался вопросом относительно того, есть ли у человечества шанс на долгосрочное и успешное выживание на планете Земля и если да, то каким образом.

Считая себя заурядным индивидом без особых денежных средств или учёной степени, Ричард Фуллер решил посвятить свою жизнь этому вопросу, пытаясь выяснить, что личности вроде него могут сделать для улучшения положения человечества из того, что большие организации, правительства или частные предприятия не могут выполнить в силу своей природы.

На протяжении этого жизненного эксперимента Ричард Бакминстер Фуллер написал двадцать восемь книг, и стал автором таких терминов как «космический корабль «Земля»», «эфемеризация», и в том числе «синергетика».

Сэр Чарльз Скотт Шеррингтон,  британский учёный в области физиологии и нейробиологии, лауреат Нобелевской премии по физиологии и медицине 1932 года, называл в рамках своих исследований синергетическим, или интегративным, согласованное воздействие нервной системы (спинного мозга) при управлении мышечными движениями.

Другой ученый, И.

Забуский, занимавшийся исследованием сложных систем в ограниченности по отдельности как аналитического, так и численного подхода к решению нелинейных задач, в 1967 году, пришёл к выводу о необходимости применения единого «синергетического» подхода, понимая под этим «…совместное использование обычного анализа и численной машинной математики для получения решений разумно поставленных вопросов математического и физического содержания системы уравнений».

И лишь в 1977 году, определение термина «синергетика», близкое к современному его пониманию, дал Герман Хакен в своей книге «Синергетика».

Определение термина «синергетика», близкое к современному пониманию, ввёл Герман Хакен в 1977 году в своей книге «Синергетика».

С этого момента и принято отсчитывать развитие «синергетики» как науки.

Синергетика. Предмет синергетики.

Область исследований синергетики чётко не определена и вряд ли может быть ограничена какими-то рамками, так как её интересы распространяются на все отрасли естествознания. Общим признаком является рассмотрение динамики любых необратимых процессов и возникновения принципиальных новаций.

Математический аппарат синергетики, который кстати продолжает развиваться, скомбинирован из разных инновационных отраслей теоретической физики и математики: нелинейной неравновесной термодинамики, теории катастроф, теории групп, тензорного анализа, дифференциальной топологии, неравновесной статистической физики.

Синергетика. Школы синергетической науки.

В мире существуют несколько школ, в рамках которых активно развивается синергетический подход:

1.Школа нелинейной оптики, квантовой механики и статистической физики Германа Хакена, с 1960 года профессора Института теоретической физики в Штутгарте.

В 1973 году он объединил большую группу учёных вокруг шпрингеровской серии книг по синергетике, в рамках которой к настоящему времени увидели свет 69 томов с широким спектром теоретических, прикладных и научно-популярных работ, основанных на методологии синергетики: от физики твёрдого тела и лазерной техники и до биофизики и проблем искусственного интеллекта.

2.Физико-химическая и математико-физическая Брюссельская школа Ильи Пригожина, в русле которой формулировались первые теоремы, разрабатывалась математическая теория поведения диссипативных структур (термин Пригожина), раскрывались исторические предпосылки и провозглашались мировоззренческие основания теории самоорганизации, как парадигмы универсального эволюционизма.

Эта школа, основные представители которой работают теперь в США, не пользуется термином «синергетика», а предпочитает называть разработанную ими методологию «теорией диссипативных структур» или просто «неравновесной термодинамикой», подчёркивая преемственность своей школы первым пионерским работам Ларса Онзагера в области необратимых химических реакций (1931).

3.Российская школа синергетики и её представители. У российской школы синергетики есть свои богатые традиции и достижения.

Так, академик Н. Н. Моисеев дополнил теоритические основы синергетики идеями универсального эволюционизма и коэволюции человека и природы.

Российским математиком В. И. Арнольдом совместно с французским математиком Рене Томом, разработан и предложен  математический аппарат теории катастроф, пригодный для описания многих процессов самоорганизации.

В рамках школы, руководимой академиком А. А. Самарским и членом-корреспондентом РАН С. П. Курдюмовым, разработана теория самоорганизации на базе математических моделей и вычислительного эксперимента (включая теорию развития в режиме с обострением).

Синергетика. Синергетический подход в естествознании.

Основные принципы, сформированные синергетической наукой для синергетических исследований в естествознании:

– Природа иерархически структурирована в несколько видов открытых нелинейных систем разных уровней организации: в динамически стабильные, в адаптивные, и наиболее сложные – эволюционирующие системы.

– Связь между открытыми системами осуществляется через хаотическое, неравновесное состояние систем соседствующих уровней.

– Неравновесность является необходимым условием появления новой организации, нового порядка, новых систем, то есть – развития.

– Когда нелинейные динамические системы объединяются, новое образование не равно сумме частей, а образует систему другой организации или систему иного уровня.

– Общее для всех эволюционирующих систем: неравновесность, спонтанное образование новых микроскопических (локальных) образований, изменения на макроскопическом (системном) уровне, возникновение новых свойств системы, этапы самоорганизации и фиксации новых качеств системы.

– При переходе от неупорядоченного состояния к состоянию порядка все развивающиеся системы ведут себя одинаково (в том смысле, что для описания всего многообразия их эволюций пригоден обобщённый математический аппарат синергетики).

– Развивающиеся системы всегда открыты и обмениваются энергией и веществом с внешней средой, за счёт чего и происходят процессы локальной упорядоченности и самоорганизации.

– В сильно неравновесных состояниях системы начинают воспринимать те факторы воздействия извне, которые они бы не восприняли в более равновесном состоянии.

– В неравновесных условиях относительная независимость элементов системы уступает место корпоративному поведению элементов: вблизи равновесия элемент взаимодействует только с соседними, вдали от равновесия – «видит» всю систему целиком и согласованность поведения элементов возрастает.

– В состояниях, далёких от равновесия, начинают действовать бифуркационные механизмы – наличие кратковременных точек раздвоения перехода к тому или иному относительно долговременному режиму систем,  аттрактору. Заранее точно невозможно предсказать, какой из возможных аттракторов займёт система.

Синергетика. Синергетические принципы самоорганизации.

Синергетика объясняет процесс самоорганизации в сложных системах и определяет его возможности следующими условиями:

– Система должна быть открытой. Закрытая система в соответствии с законами термодинамики должна в конечном итоге прийти к состоянию с максимальной энтропией и прекратить любые эволюции.

– Открытая система должна быть достаточно далека от точки термодинамического равновесия. В точке равновесия сколь угодно сложная система обладает максимальной энтропией и не способна к какой-либо самоорганизации.

В положении, близком к равновесию и без достаточного притока энергии извне, любая система со временем ещё более приблизится к равновесию и перестанет изменять своё состояние. Ни одна открытая система не может бесконечно сохранять своё равновесие.

Ни одна закрытая система не может бесконечно оставаться закрытой. Абсолютное равновесие природой не допустимо.

– Фундаментальным принципом самоорганизации служит возникновение нового порядка и усложнение систем через флуктуации (случайные отклонения) состояний их элементов и подсистем.

Такие флуктуации обычно подавляются во всех динамически стабильных и адаптивных системах за счёт отрицательных обратных связей, обеспечивающих сохранение структуры и близкого к равновесию состояния системы.

Но в более сложных открытых системах, благодаря притоку энергии извне и усилению неравновесности, отклонения со временем возрастают, накапливаются, вызывают эффект коллективного поведения элементов и подсистем и, в конце концов, приводят к «расшатыванию» прежнего порядка и через относительно кратковременное хаотическое состояние системы приводят либо к разрушению прежней структуры, либо к возникновению нового порядка. Поскольку флуктуации носят случайный характер, то состояние системы после бифуркации обусловлено действием суммы случайных факторов.

– Самоорганизация, имеющая своим исходом образование через этап хаоса нового порядка или новых структур, может произойти лишь в системах достаточного уровня сложности, обладающих определённым количеством взаимодействующих между собой элементов, имеющих некоторые критические параметры связи и относительно высокие значения вероятностей своих флуктуаций.

В противном случае эффекты от синергетического взаимодействия будут недостаточны для появления коллективного поведения элементов системы и тем самым возникновения самоорганизации.

Недостаточно сложные системы не способны ни к спонтанной адаптации ни, тем более, к развитию и при получении извне чрезмерного количества энергии теряют свою структуру и необратимо разрушаются.

– Этап самоорганизации наступает только в случае преобладания положительных обратных связей, действующих в открытой системе, над отрицательными обратными связями.

Функционирование динамически стабильных, неэволюционирующих, но адаптивных систем – а это и гомеостаз в живых организмах и автоматические устройства – основывается на получении обратных сигналов от рецепторов или датчиков относительно положения системы и последующей корректировки этого положения к исходному состоянию исполнительными механизмами. В самоорганизующейся, в эволюционирующей системе возникшие изменения не устраняются, а накапливаются и усиливаются вследствие общей положительной реактивности системы, что может привести к возникновению нового порядка и новых структур, образованных из элементов прежней, разрушенной системы. Таковы, к примеру, механизмы фазовых переходов вещества или образования новых социальных формаций.

– Самоорганизация в сложных системах, переходы от одних структур к другим, возникновение новых уровней организации материи сопровождаются нарушением симметрии.

При описании эволюционных процессов необходимо отказаться от симметрии времени, характерной для полностью детерминированных и обратимых процессов в классической механике.

Самоорганизация в сложных и открытых – диссипативных системах, к которым относится и жизнь, и разум, приводят к необратимому разрушению старых и к возникновению новых структур и систем, что наряду с явлением неубывания энтропии в закрытых системах обуславливает наличие «стрелы времени» в Природе.

Синергетика. Современная синергетика.

Синергетика – универсальная теория эволюции!

Современная синергетика – это междисциплинарное направление научных исследований, задачей которого является изучение природных явлений и процессов на основе принципов самоорганизации систем (состоящих из подсистем); – наука, занимающаяся изучением процессов самоорганизации и возникновения, поддержания, устойчивости и распада структур самой различной природы.

Основное понятие синергетики – определение структуры как состояния, возникающего в результате многовариантного и неоднозначного поведения таких многоэлементных структур или многофакторных сред, которые не деградируют к стандартному для замкнутых систем усреднению термодинамического типа, а развиваются вследствие открытости, притока энергии извне, нелинейности внутренних процессов, появления особых режимов с обострением и наличия более одного устойчивого состояния.

В обозначенных структурах и системах неприменимы ни второе начало термодинамики, ни теорема Пригожина о минимуме скорости производства энтропии, что может и должно привести к образованию новых структур и систем, в том числе и более сложных, чем исходные. В отдельных случаях образование новых структур имеет регулярный, волновой характер, и тогда они называются автоволновыми процессами (по аналогии с автоколебаниями).

Феномен появления новых природных структур часто трактуется синергетикой как всеобщий механизм повсеместно наблюдаемого в природе направления эволюции: от элементарного и примитивного к сложносоставному и более совершенному.

Современная синергетика. Глобальный эволюционизм.

 С мировоззренческой точки зрения синергетику иногда позиционируют как «глобальный эволюционизм» или «универсальную теорию эволюции», дающую единую основу для описания механизмов возникновения любых новаций, подобно тому, как некогда кибернетика определялась, как «универсальная теория управления», одинаково пригодная для описания любых операций регулирования и оптимизации: в природе, в технике, в обществе и так далее. Однако время показало, что всеобщий кибернетический подход оправдал далеко не все возлагавшиеся на него надежды. Соответственно, и расширительное толкование применимости методов синергетики ко всем проявлениям эволюции и коэволюции, также находит оппозицию и подвергается критике и широкой дискуссии.

Синергетика и законы природы. Синергетика как наука. Синергетика как научный подход и метод. Универсальная теория эволюции – синергетика.

Модный женский сайт Я самая красивая!

Источник: http://www.i-kiss.ru/rubrika/sinergetika

Синергетика

Синергетика

СИНЕРГЕТИКА: СТАНОВЛЕНИЕ НЕЛИНЕЙНОГО МЫШЛЕНИЯ

Человеческая деятельность стала оказывать необратимое воздействие на природу значительно раньше, чем человек начал об этом догадываться. Сейчас, когда глобальны сами масштабы этой деятельности, необходимость приведения процесса освоения природы в гармоничное соответствие с законами ее функционирования становится условием существования человечества. К счастью, развитие современной науки создав адекватные средства решения глобальных проблем, в том числе задач возведения предметного мира, создаваемого человеком, на уровень саморегуляции, характерный для живых систем. Только в 80-е годы наука приблизилась к открытию законов, действие которых обеспечивает целостность развивающихся природных систем. Об этом свидетельствует создание синергетических теорий самоорганизации сложных систем, а также единых теорий фундаментальных физических взаимодействий Синергетика появляется как научное направление, изучающее единую сущность самых разных явлений, рассматриваемых как процесс перехода от неупорядоченности к порядку. Это излучение лазера и морфогенез гидры, автоволновые процессы в химических реакциях и биение человеческого сердца, распространение информации в научном сообществе и поведение плазмы в определенных температурных режимах. Даже в космологических моделях, основанных на единых теориях фундаментальных физических взаимодействий, осуществляется синергетический подход к описанию начальных этапов становления нашей Вселенной. Здесь повсюду имеет место согласованное кооперативное движение элементов среды (атомов, молекул, живых клеток и пр.), т. е. возникают устойчивые структуры. Последние являются открытыми и достаточно активно обмениваются энергией и веществом со средой. При этом в них понижается энтропия за счет повышения энтропии в среде. Синергетика, математически описывая необратимые качественные изменения, обеспечивающие переход от простого к сложному, оказывается теоретическим описанием развивающихся систем Изучение их имеет огромное значение, потому что большинство интересующих нас систем — и мы сами, и города, в которых мы живем, и, наконец, наша планета — относится именно к такому типу Возможности практического применения достижений синергетики огромны и еще не до конца исследованы Например, в ведении синергетики находится вся область когерентных процессов, использование которых позволило создать голографию, лазерную технику, безлинзовую и волоконную оптику Синергетический подход к человеческому организму как развивающейся целостной системе уже сейчас теоретически обеспечивает первые шаги биорезонансной диагностики и терапии. Однако новый подход требует пересмотра привычных для классической и даже современной науки методологических установок, сложившихся при изучении равновесных изолированных систем. Так, автоволны как бы «забывают» начальные условия своего возникновения. В этом их отличие от механических систем, жестко зависящих от начальных условий движения. В то же время само возникновение этих устойчивых структур основано на неравновесности и является закреплением случайного отклонения от равновесия, что поддерживается какими-либо факторами: внутренними (химическая реакция, диффузия) или внешними (поток энергии). Регресс нереализовавшихся возможностей при выборе системой одного из путей в точке их разветвления демонстрирует как наличие необратимости качественных изменений, так и связанную с ними диалектику прогресса и регресса, возможного и действительного в развитии системы. Переход точного естествознания к исследованию открытых развивающихся систем, складывающихся как органическое целое, выдвигает потребность диалектического понимания категорий возможного и действительного, необходимого и случайного, части и целого. Ведь становление самоорганизующейся целостности задает способ поведения ее частей Так, при образовании цунами рельеф морского дна на протяжении многих километров определяет сохраняющуюся форму волны, т. е. движение всех капель воды, входящих в эту гигантскую волну — солитон, движущуюся как одно целое Для физики и химии превалирование целого по отношению к частям ново и требует существенного дополнения типичных норм объяснения, ориентированных на выведение всех свойств целого из свойств его частей и их взаимодействия. Диалектическое соотношение категорий целого и части является существенным моментом и в единых теориях фундаментальных физических взаимодействий. Здесь типы симметрии, характерные для становящейся Вселенной как целого, и способ их нарушения определяют фундаментальные законы существования всех видов элементарных частиц. Исследование самоорганизующихся целостных систем ведет к пересмотра норм объяснения в конкретных науках, к качественным изменениям в научной картине мира. Подобные сдвиги в научном познании рассматриваются в методологии науки как революционные Научные революции с необходимостью требуют философского осмысления как новых познавательных результатов, так и меняющихся методологических установок деятельности ученых Следует подчеркнуть, что происходящие в научном познании революционные изменения затрагивают и интересы общественного развития, причем не только в силу стимулирующего влияния научного знания на технический прогресс. Не меньшее значение, на наш взгляд, имеют трансформация стиля научного мышления и связанный с ней пересмотр ряда стандартов научного объяснения, окруженных ранее ореолом эталонов точности. Респектабельность таких стандартов, представленных в обыденном сознании как научные, может продолжать влиять на деятельность людей с силой предрассудка даже тогда, когда наука уже обнаружила их ограниченность. Так, авторитет классической механики как образца научности продолжает сохраняться на уровне методологического сознания, хотя в физических теориях пределы применимости механики давно обнаружены. Тем не менее представления о незыблемости научных законов, о неограниченности их линейной экстраполяции в пространстве и во времени сохраняют статус признаков научности. Между тем их неявным основанием является концепция лапласовского детерминизма, применимая благодаря линейности математических уравнений, что связано с идеализирующими допущениями о неизменности исследуемых объектов и условий их существования. Связь между такими идеализирующими допущениями и методологическими принципами становится очевидна лишь в свете дальнейшего развития науки, но ее осознание требует дополнительных методологических усилий. Идеал лапласовского детерминизма вдохновлял творцов теорий скрытых параметров десятилетия после создания квантовой механики и разработки концепции вероятностной причинности вплоть до осуществленного в самое последнее время экспериментального доказательства полноты квантовой механики. Однако представление об обратимости во времени законов физики, органично связанное с пониманием причинной связи как однозначной, продолжает оставаться символом фундаментальности в методологическом сознании подавляющего большинства физиков и сейчас. То обстоятельство, что необратимость, выражаемая законами статистической физики, при таком подходе теряет объективные основания, т. е. случайность должна трактоваться субъективистски — как результат недостаточного знания, осознается далеко не всегда. А пока физики решают вопрос о том, что более фундаментально: микроскопический подход, связанный с обратимыми динамическими законами, или макроскопический, связанный с необратимостью, выражаемой статистическими законами, люди действия продолжают ассоциировать научность с устаревшими методологическими стандартами. Понятно, что применение стандартов, выработанных для освоения стабильных систем, находящихся в равновесных условиях и подчиняющихся линейным законам, к саморазвивающимся системам, находящимся в очень неравновесных условиях и управляемым нелинейными закономерностями, не может привести к успеху. На счету линейного, метафизического мышления — аварии на крупных химических производствах, экологические катастрофы, просчеты в экономике и социальной политике. Мы далеки от мысли связывать все трудности нашей истории и современности лишь с издержками в методологическом понимании сущности научных законов. Однако сбрасывать со счетов по сути своей позитивистское представление о законах науки, на которое опирался политический централизм в своих технократических тенденциях, нельзя. Методологическое осмысление развивающегося естествознания необходимо и имеет важное значение для развития общества. Прежде всего знание природных объектов необходимо как для их успешного преобразования, так и для осознания разумных границ этих преобразований (т. е. для обеспечения как технической стороны деятельности, так и объективных оснований ценностных суждений). Кроме того, законы природы как «неорганического тела человека» (К. Маркс) продолжают действовать и в сознательно созданном им предметном мире, и в стихийно складывающихся социально-природных комплексах. Да и сам человек как представитель живого на Земле не может игнорировать закономерности своего природного существования. Как уже было сказано выше, большинство интересующих нас объектов — экологические природные и социально-природные комплексы, живые организмы, города, предприятия, экономические структуры — являются открытыми системами, неравновесными, управляемыми нелинейными законами. Они обнаруживают невозможную в области действия линейных законов способность к самоорганизации, резонансным образом реагируют на внешние воздействия, их поведение неоднозначно определяется предшествующей историей их эволюции. Необходимость учета всех этих свойств в деятельности человека очевидна. Но такой учет возможен только на основе перестройки мышления. Новое мышление в его, так сказать, техническом применении должно быть нелинейным. Всеобщими формами мышления, как известно, являются категории. И обобщение конкретных приемов нелинейного мышления требует их философского осмысления. Ну а поскольку речь идет о становлении и развитии, логично предположить, что естественнонаучное мышление входит, наконец, в ту сферу своей деятельности, где окажется совершенно адекватным применение диалектики. Таким образом, если нам удастся показать, что в своих философских основаниях нелинейное мышление диалектично, то, кроме вполне конкретных методологических последствий (о которых будет сказано в заключительной главе), окажется возможным еще один принципиальный вывод. Речь идет о том, что новое политическое мышление (декларируемое как диалектическое) в качестве подспорья обретет как конкретную диалектику стиль мышления, вырабатываемый в процессе естественнонаучного освоения процессов самоорганизации,— нелинейное мышление. А если учесть, что и общественная жизнь в определенных своих аспектах поддается синергетическому описанию (так, описано формирование общественного мнения, распространение научной информации, смоделированы некоторые экономические процессы), то практическое значение знания общих законов самоорганизации следует оценить еще выше. Интересно заметить, что мысль о необходимости демократизации хозяйственной и политической жизни полностью соответствует концепции самоорганизации, раскрывающей объективные возможности и условия самопроизвольного формирования и самовоспроизведения устойчивых сложных структур. Как видим, и сами теории самоорганизации, и их философское осмысление выходят далеко за рамки академического интереса. Итак, научный и социальный пафос данного исследования обозначен. Конкретные же задачи, которые ставит перед собой автор, таковы: 1) рассмотреть ход революционных изменений в современном точном естествознании как становление новых исследовательских программ; 2) показать, что это программы теоретического освоения процессов становления (самоорганизации) сложных материальных систем, в чем и кроется их принципиальная новизна; 3) исследовать соответствующее расширение философских оснований естественнонаучного знания, в частности категориальных форм его осмысления; 4) выявить методологические следствия происходящей революции в естествознании: — изменение методологических принципов физики; — изменение отношений между науками в связи со становлением физики живого; — перспективы создания единой естественнонаучной картины мира. Основное средство методологического анализа и философского осмысления — интертеоретический анализ развивающегося знания, т. е. комплексное рассмотрение системы теорий в связи с научной картиной мира и системой методологических принципов в соответствующем философском и социокультурном контексте. Синергетика изначально представлялась как междисциплинарный подход, так как принципы, управляющие процессами самоорганизации, одни и те же безотносительно природы систем. Основное понятие синергетики — определение структуры как состояния, возникающего в результате поведения многоэлементной или многофакторной среды, не демонстрирующей стремления к усреднению термодинамического типа. В отдельных случаях образование структур имеет волновой характер и иногда называется автоволновыми процессами (по аналогии с автоколебаниями).

История исследований

Ч. Шеррингтон называл синергетическим, или интегративным, согласованное воздействие нервной системы (спинного мозга) при управлении мышечными движениями. Улам С., много работавший с ЭВМ, в 1964 году в своей книге «Нерешенные математические задачи» (М.: Наука) высоко оценил синергию — непрерывное сотрудничество между машиной и ее оператором, осуществляемого за счёт вывода информации на дисплей. Поняв ограниченные возможности как аналитического, так и численного подхода к решению нелинейных задач, И. Забуский в 1967 году пришел к выводу о необходимости единого синергетического подхода, понимая под этим «…совместное использование обычного анализа и численной машинной математики для получения решений разумно поставленных вопросов математического и физического содержания системы уравнений»[2]. Определение термина «синергетика», близкое к современному пониманию, ввёл Герман Хакен в 1977 году в своей книге «Синергетика».

Области исследований

Область исследований синергетики до сих пор до конца не определена, так как предмет её интересов лежит среди различных дисциплин, а основные методы синергетики взяты из нелинейной неравновесной термодинамики. Существуют несколько школ, в рамках которых развивается синергетический подход: 1. Брюссельская школа Ильи Пригожина, в русле которой разрабатывалась теория диссипативных систем, раскрывались исторические предпосылки и мировоззренческие основания теории самоорганизации. 2. Школа Г. Хакена, профессора Института синергетики и теоретической физики в Штутгарте. Он объединил большую группу учёных вокруг шпрингеровской серии книг по синергетике, в рамках которой к настоящему времени увидели свет более 60 томов. 3. Математический аппарат теории катастроф для описания синергетических процессов разработан российским математиком В. И. Арнольдом и французским математиком Рене Тома. 4. В рамках школы академика А. А. Самарского и члена-корреспондента РАН С. П. Курдюмова разрабатана теория самоорганизации на базе математических моделей и вычислительного эксперимента (включая теорию развития в режиме с обострением). В России вклад в развитие синергетики внесли академик Н. Н. Моисеев — идеи универсального эволюционизма и коэволюции человека и природ. 5. Синергетический подход в биофизике развивается в трудах членов-корреспондентов РАН М. В. Волькенштейна и Д. С. Чернавского. 6. Синергетический подход в теоретической истории развивается в работах Д. С. Чернавского, Г.Г.Малинецкого, Л.И.Бородкина, С.П.Капицы, С.Ю.Малкова, А.В.Коротаева, П.В.Турчина, В.Г.Буданова, А.П.Назаретяна и др. Постепенно предмет синергетики распределился между различными направлениями: • теория динамического хаоса исследует сверхсложную упорядоченность, напр. явление турбулентности; • теория детерминированного хаоса исследует хаотические явления, возникающие в результате детерминированных процессов (в отсутствие случайных шумов); • теория фракталов занимается изучением сложных самоподобных структур, часто возникающих в результате самоорганизации, процесс самоорганизации также может быть фрактальным; • теория катастроф исследует поведение самоорганизующихся систем в терминах бифуркация, аттрактор, неустойчивость; • лингвистическая синергетика и прогностика. Синергетический подход в современном познании, основные принципы: • Наука имеет дело с системами разных уровней организации, связь между ними осуществляется через хаос • Когда системы объединяются, целое не равно сумме частей • Общее для всех систем: спонтанное образование, изменения на макроскопическом уровне, возникновение новых качеств, этап самоорганизации. При переходе от неупорядоченного состояния к состоянию порядка все системы ведут себя одинаково • Неравновесность в системе является источником появления новой организации (порядка) • Системы всегда открыты и обмениваются энергией с внешней средой • Процессы локальной упорядоченности совершаются за счет притока энергии извне • В сильно неравновесных условиях системы начинают воспринимать те факторы, которые они бы не восприняли в более равновесном состоянии • В неравновесных условиях независимость элементов уступает место корпоративному поведению • Вдали от равновесия согласованность поведения элементов возрастает. В равновесии молекула видит только своих соседей, вдали равновесия – видит всю систему целиком. Примеры: костная материя – коммуникация посредством сигналов, работа головного мозга. • В условиях, далеких от равновесия, в системах действуют бифуркационные механизмы – наличие точек раздвоения продолжения развития. Варианты развития системы практически не предсказуемы.

Современная наука и синергетика объясняют процесс самоорганизации систем следующим образом:

1. Система должна быть открытой. Закрытая система в соответствии с законами термодинамики должна в конечном итоге прийти к состоянию с максимальной энтропией. 2. Открытая система должна быть достаточно далека от точки термодинамического равновесия. В точке равновесия система обладает максимальной энтропией и поэтому не способна к какой-либо организации: в этом состоянии достигается максимум ее самодезорганизации. В состоянии, близком к равновесию, система со временем приблизится к нему и придет в состояние полной дезорганизации. 3. Фундаментальным принципом самоорганизации служит возникновение и усиление порядка через флуктуации. Такие флуктуации, или случайные отклонения, системы от некоторого среднего положения, в самом начале подавляются и ликвидируются системой. Но в открытых системах благодаря усилению неравновесности эти отклонения со временем возрастают и в конце концов приводят к «расшатыванию» прежнего порядка и возникновению нового. Этот процесс обычно характеризуют как принцип образования порядка через флуктуации. Так как флуктуации носят случайный характер, то становится ясно, что появление нового в мире всегда связано с действием случайных факторов. Об этом говорили античные философы Эпикур (341-270 до н.э.) и Лукреций Кар (99-45 до н.э.). 4. Возникновение самоорганизации опирается на положительную обратную связь. Функционирование различных автоматических устройств основывается на принципе отрицательной обратной связи, т.е. на получение обратных сигналов от исполнительных органов относительно положения системы и последующей корректировки этого положения управляющими устройствами. В самоорганизующейся системе изменения, появляющиеся в системе, не устраняются, а накапливаются и усиливаются, что и приводит в конце концов к возникновению нового порядка и структуры. 5. Процессы самоорганизации, как и переходы от одних структур к другим, сопровождаются нарушением симметрии. Так, мы уже видели, что при описании необратимых процессов пришлось отказаться от симметрии времени, характерной для обратимых процессов в механике. Процессы самоорганизации, связанные с необратимыми изменениями, приводят к разрушению старых и возникновению новых структур. 6. Самоорганизация может начаться лишь в системах, обладающих достаточным количеством взаимодействующих между собой элементов, имеющих некоторые критические размеры. В противном случае эффекты от синергетического взаимодействия будут недостаточны для появления коллективного поведения элементов системы и тем самым возникновения самоорганизации.

Псевдосинергетика!

Наблюдаются случаи использования терминологии синергетики для придания веса псевдонаучным изысканиям.

См. по теме: Синергетика

Источник: https://scientifically.info/publ/7-1-0-141

Синергетика: основные понятия, положения и направления

Синергетика

Синергетика — наука о законах самоорганизации сложных развивающихся систем.

Основоположники ( Пригожин, Хакен , в россии Курдюмов).

Термин “синергетика” (греч. — содействие, сотрудничество) использовал Г. Хакен. Она изучает любые самоорганизующиеся системы, состоящие из многих подсистем (электроны, атомы, молекулы, клетки, нейроны, органы, сложные многоклеточные организмы, люди, сообщества людей).

Стремится показать, как из хаоса возникают многообразные формы сложноорганизованной физической реальности. Тем самым перебрасывается как бы мостик между физикой и биологией.

Биологическая теория говорила о созидании в процессе эволюции все более сложных и упорядоченных живых систем, а термодинамика — о разрушении. Эти коллизии между физикой и биологией требовали своего разрешения.

Современные концепции самоорганизации позволяют устранить традиционный парадигмальный разрыв между эволюционной биологией и физикой.

Синергетика призвана решить задачу, как из хаоса возникает порядок. Ведь суть всякой организации состоит в упорядоченности элементов системы.

В процессе порождения хаосом упорядоченных организованных систем обязательно появятся качественные переходы, т.е. возникнут такие ситуации, когда непрерывность прерывается, а качественная определенность процесса преобразуется.

В синергетике для обозначения такого скачкообразного преобразования вводится название бифуркация.

 В процессе движения от хаоса к порядку, который представляет собой процесс преобразования качественной определенности, спонтанно возникает неопределенность, порождаемая бифуркациями.

Характер направленности самоорганизации связан с АТТРАКТОРОМ — некоторое определенное состояние , к которому стремится эволюция системы.

Аттрактор обоснован законами природы. Он неидеален. Аттракторов множество. Можно говорить только о вероятности определенного аттрактора.

Исходя из реального состоянии системы в данный момент времени мы можем определить основной аттрактор, в большинстве случаев мы не можем точно определить какой из аттракторов будет реализован.

Каждый прогноз носит вероятностный характер.

Проблему неопределенности синергетика поставила на иную основу. Появился «странный аттрактор». Он описывает поведение системы, в каком-то смысле аналогичное поведению живых организмов.

Странный аттрактор позволил сделать вывод, что система способна к непредсказуемому изменению.

Флуктуация — случайное отклонение физических величин от их средних значений.

Синергетика перебросила двойной мостик от мира неорганического к живым системам:

1. Она выявила аналогию структур функционирования физико-химических и биологических систем.

2. Показала необходимость эволюции неорганических систем в направлении к органическим.

Благодаря математической форме используемых моделей синергетика открыла новые перспективы использования знания, полученного при исследовании физико-химических систем, для изучения органических и социальных систем.

Понятие хаоса играло немаловажную роль на протяже­нии всей истории развития человеческой мысли. С хаосом связывались представления о гибельном беспорядке, о не­различимой пучине, зияющей бездне. Собственно, такое представление является наиболее распространенным и в обыденной жизни.

Тем не менее, идея первичного хаоса, из которого потом все родилось, также достаточно распрост­ранена в древних мифах, в восточной философии, в учени­ях древних греков.

Начиная с 70-х годов нашего века бурно развивается направление, называемое «синергетикой», в фокусе внимания которого оказывают­ся сложные системы с самоорганизующимися процессами, системы, в которых эволюция протекает от хаоса к поряд­ку, от симметрии ко все возрастающей сложности.

Синергетика в переводе с греческого языка означает «содружество, коллективное поведение». Термин этот впер­вые был введен Хакеном. Как новационное направление в науке, синергетика возникла, в первую очередь, благодаря выдающимся достижениям И.

Пригожина в области не­равновесной термодинамики.

Им было показано, что в не­равновесных открытых системах возможны эффекты, при­водящие не к возрастанию энтропии и стремлению термодинамических систем к состоянию равновесного хаоса, а к «самопроизвольному» возникновению упорядоченных структур, к рождению порядка из хаоса.

Процессы, протекающие в различных явлениях приро­ды, следует разделять на два класса. К первому классу от­носятся процессы, протекающие в замкнутых системах.

Они развиваются в направлении возрастания энтропии и приводят к установлению равновесного состояния в систе­мах. Ко второму классу относятся процессы, протекающие в открытых системах.

В соответствующие моменты — мо­менты неустойчивости — в них могут возникать малые возмущения, флуктуации, способные разрастаться в макро­структуры.

Таким образом, хаос и случайности в нем мо­гут выступать в качестве активного начала, приводящего к развитию новых самоорганизаций. Таким образом, флуктуационная гипотеза Больцмана на современном витке раз­вития науки получает в некотором смысле «оправдание» и «право на жизнь».

Одним из важнейших результатов, полученных Пригожиным, его школой и последователями, является новый подход к анализу сложных явлений. Во-первых, самоорганизация в сложных системах свиде­тельствует о невозможности установления жесткого конт­роля за системой.

То есть самоорганизующейся системе нельзя навязать путь развития.

Управление такой систе­мой может рассматриваться лишь как способствование соб­ственным тенденциям развития системы, с учетом прису­щих ей элементов саморегуляции. Во-вторых, для самоор­ганизующихся систем существует несколько различных путей развития.

В равновесном или слаборавновесном со­стоянии в системе существует только одно стационарное состояние, которое зависит от некоторых управляющих параметров. Изменение этих управляющих параметров будет уводить систему из равновесного состояния.

В кон­це концов, вдали от равновесия система достигает некото­рой критической точки, называемой точкой бифуркации.

Начиная с этого момента на дальнейший ход эволюции системы могут оказывать воздействия даже ничтожно ма­лые флуктуации, которые в равновесом состоянии системы попросту неразличимы. Поэтому невозможно точно пред­сказать, какой путь эволюции выберет система за порогом бифуркации. В параграфе 6 главы 7 этой книги будет рассмотрен сценарий эволюций Вселенной через призму синер­гетики.

Следует отметить высокий темп идей и открытий при описании синергетических явлений во всех отраслях науки.

Важное значение синергетики состоит в том, что она указывает границы применимости II начала термодинами­ки и, более того, делает его элементом более широкой тео­рии необратимых процессов, в которой предполагается ес­тественное описание с единой точки зрения обоих классов явлений природы.

Синергетика – наука о самоорганизации простых систем, о превращении хаоса в порядок. Возникшие сложные упорядоченные системы попадают под действие конкуренции и отбора. Как утверждает Хакен, это приводит в определенном смысле к обобщенному дарвинизму, действие которого распространяется не только на органический, но и на неорганический мир.

Объект изучения синергетики, независимо от его природы, должен удовлетворять следующим требованиям:

1. Система должна быть открытой, т. е. обмениваться веществом и энергией с окружающей средой;

2. Система должна быть достаточно далеко от точки термодинамического равновесия, т. е. в состоянии, близком к потере устойчивости;

3. Обладать достаточным количеством элементов, взаимодействующих между собой;

4. Иметь положительную обратную связь, при котором изменения, появляющиеся в системе, не устраняются, а накапливаются и усиливаются, что приводит к возникновению нового порядка и структуры;

5. Сопровождаться нарушением симметрии, т. к. изменения приводят к разрушению старых и образованию новых структур;

6. Скачкообразно выходить из критического состояния при переходе на более высокий уровень упорядоченности. Скачок – это крайне нелинейный процесс, при котором малые изменения параметров системы вызывают очень сильные изменения ее состояния и переход в новое качество.

Примеры синергетики существуют во всех естественных науках:

– лазер, создающий высокоорганизованное оптическое излучение;

– эффект Бенара – при нагревании силиконового масла на его поверхности возникает динамическая упорядоченная структура, напоминающая кристалл в виде сеточки с ячейками гексагональной формы.

– реакция Белоусова-Жаботинского – это автоколебательные процессы при окислении-восстановлении солей церия: Се3+ « Се4+. На стадии окисления жидкость становится красной, при восстановлении – синей. Окраска раствора постоянно периодически изменяется.

– в биологии к числу синергетических явлений относятся мышечные сокращения, электрические колебания в коре головного мозга и т. д.

Постепенно предмет синергетики распределился между различными направлениями:

– теория динамического хаоса исследует сверхсложную упорядоченность, напр. явление турбулентности;

– теория детерминированного хаоса исследует хаотические явления, возникающие в результате детерминированных процессов (в отсутствие случайных шумов);

– теория фракталов занимается изучением сложных самоподобных структур, часто возникающих в результате самоорганизации, процесс самоорганизации также может быть фрактальным;

– теория катастроф исследует поведение самоорганизующихся систем в терминах бифуркация, аттрактор, неустойчивость;

– лингвистическая синергетика и прогностика.

Стартовой точкой для всех исследований в области синергетики является адекватное описание состояния системы на разных уровнях.

Важно иметь в виду, однако, что описание таких состояний системы на различных уровнях может относиться к совершенно разным количествам объектов, а также к абстрактным понятиям, например, к мнению или поведению людей или целых социальных групп. Описание поведения системы на различных уровнях может быть выполнено с помощью так называемого вектора состоянии.

Следующее понятие, используемое в синергетике – управляющий параметр (императив, доминанта, идея, миссия, философема, постулат), который может быть представлен как одиночным, так и несколькими управляющими параметрами. Их количество фиксировано и налагается на систему извне – управляющие параметры не меняются по мере изменения системы.

Синергетика фокусирует свое внимание на тех ситуациях, в которых поведение системы изменяется качественно при изменении управляющих параметров.

Если структура сохраняется при изменении условий среды, т. е. управляющих параметров, то эта структура называется устойчивой или структурно устойчивой. Но если структура изменяется, мы говорим об относительной неустойчивости.

Как было сказано прежде, синергетика фокусирует свое внимание на качественных изменениями тех случаях неустойчивости, которые вызваны изменением параметров управления.

В условиях нового управляющего параметра система сама создает специфические структуры, что и называется самоорганизацией.

Во многих случаях поведение системы, близкое к таким точкам неустойчивости, может зависеть от поведения очень немногих переменных, можно даже сказать, что поведение отдельных частей системы просто определяется этими немногими факторами. Эти факторы называются параметрами порядка, и здесь нужно избегать представления о том, что эти параметры заботятся только о порядке; они могут также представлять или управлять беспорядочные, хаотические состояния или управлять ими.

Параметры порядка играют доминирующую роль в концепции синергетики. Они “подчиняют” отдельные части, т. е. определяют поведение этих частей. Связь между параметрами порядка и отдельными частями системы называется принципом подчинения.

С определением параметров порядка поведение системы можно считать описанным. Отпадает необходимость описания поведения системы посредством описания отдельных ее частей, нам нужно иметь дело или описывать поведение только параметров порядка. Другими словами, мы получаем здесь огромное информационное сжатие.

Такое информационное сжатие, между прочим, типично для любого языка.

Отдельные части в свою очередь сами генерируют параметр порядка своим коллективным поведением. Это называется круговая причинная связь. В технических системах такая круговая причинная связь известна как обратная связь.

Однако, в отличие от технических систем, в которых параметр порядка фиксирован с самого начала (инженером), например, в форме устройства управления, в синергетических системах параметры порядка создаются отдельными частями системы.

Систематическое представление дает представление о поведении параметров порядка, поскольку от них исходят типичные виды поведения систем. Понятие информационного сжатия, упомянутое выше, исходит из принципа подчинения и дает огромное преимущество для описания поведения сложной системы в относительно простых условиях.

Существует фундаментальное различие между поведением параметров порядка и подчиненных частей с течением времени. Параметры порядка реагируют на возмущения извне медленно, а части – быстро. Можно было бы даже сказать: параметры порядка живут дольше, части же живут меньше (в своей поведенческой динамике).

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/8_36721_sinergetika-osnovnie-ponyatiya-polozheniya-i-napravleniya.html

Vse-referaty
Добавить комментарий