Современные проблемы квантовой механики

Проблемы квантовой механики

Современные проблемы квантовой механики

Замечание 1

В квантовой механике существуют определенные проблемы, которые выражены в форме парадоксов, и возникают при описании процесса измерений для квантовой системы. Возникновение этих проблем относится к моменту появления квантовой механики, но они не теряют своей актуальности и в настоящее время.

Замечание 2

Проблема измерения сохраняет свою актуальность в отношении любой физической теории. В квантовой механике она объясняется резкими отличиями классического понимания феномена измерения и квантово-механического.

В классической механике измерение воспринимается в виде фиксированных значений некоторых из параметров, существующих до процесса измерения. Сам процесс измерения при этом понимается независимо от принципов квантовой теории.

Квантовая механика, главным образом, учитывает особенности квантово-механической динамики:

$A\psi=a\psi$

Где $A$ и $a$ это области нахождения частицы, а $\psi – ее состояние.\psi – ее состояние.

В квантовой механике предполагается, что измерение системы квантов будут регистрировать собственные значения операторов. При этом ситуацию сильно усложняет прямой учет принципа суперпозиции (при рассмотрении волновой функции):

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

$\psi = c-1 \psi_1+C_2 \psi_2+…C_n \psi_n$

В этом случае регистрируются альтернативные результаты измерений с вероятностями $p_i$:

$p_i=|c_i|2$

Проблема понимания коллапса волновой функции

Еще одна проблемная ситуация заключается в вопросе о коллапсе волновой функции. Одним из первых при обращении к математическому описанию процесса измерений, Д. фон Нейман выделил следующие процессы:

  • в отношении чистых состояний (описан уравнением Шредингера);
  • которые характеризуются переходом от чистого состояния к смешанному (связаны с выбором, осуществляемым самим экспериментатором). Отдельное измерение не может при этом касаться одновременно всех волновых функций квантовой системы.

В соответствии с этим, необходимо признать факт прерывания суперпозиции состояний, редуцируемой к одному из них. В этом, собственно, и заключается коллапс волновой функции. При этом он понимается по-разному. В одних случаях он будет считаться всего лишь математическим приемом, который не описывает реальные процессы.

В иных случаях коллапс подвергается онтологической интерпретации. При этом выдвигаются предположения о превращении нелокального процесса в локальный.

Скорость такого процесса будет превышать скорость света в вакууме, что само по себе парадоксально. В качестве примера можно рассмотреть процесс рассеяния частиц. При попадании на экран они начнут фиксироваться как локальные проявления.

Согласно предположениям ученых, реальный волновой процесс будет мгновенно стягиваться в точечную область.

Концептуальная проблема сознания в квантовой механике

Замечание 3

Возникновение концептуальных проблем в квантовой механике объясняется отличием в понимании самой реальности механики квантов от классической. Это впервые выразили в формате парадоксов такие ученые, как Эйнштейн, Розен и Подольский.

С иной точки зрения то же самое выражается иначе: концептуальные проблемы квантовой механики не могут решаться без применения такого понятия, как «сознание наблюдателя». Именно в этом и будет заключаться проблема разрешения квантовых парадоксов, поскольку в физике законы формулируются, в первую очередь, как объективные и не зависимые от сознания.

Пусть состояние трех систем до измерения описывает вектор $\psi_0=\psi_1 \psi_0X_0$. Тогда после проведения измерений это состояние определит формула:

$\psi_1=\psi_1 \phi_1X_1$

Согласно интерпретации этого вектора, прибор будет демонстрировать первый результат измерения. Наблюдатель при этом находится в состоянии наблюдения первого результата измерения, который демонстрирует прибор.

Так же легко можно предвидеть ситуацию в случае пребывания измеряемой системы во втором состоянии. В этом случае все три системы до измерения описывает вектор $\psi_0=\psi_2 \psi_0X_0$. При этом после измерения они будут описываться вектором: $\psi_2=\psi_2 \phi_2X_2$

Если до измерения наблюдалась суперпозиция двух состояний системы, которая измеряется, тогда все три системы находились в таком состоянии:

$\psi_0=(с_1\psi_1+с_2\psi_2) \phi_0X_0$

После измерения мы наблюдаем изменение состояния, которое будет представлять вектор:

$\psi=c-1\psi_1 \phi_1X_1+с_2 \psi_2 \phi_2X_2$

Теперь можно говорить о существовании корреляции между тремя системами. При этом важно, чтобы обе компоненты суперпозиции не исчезли. Такая форма вектора представляет следствие линейности квантовой механики. При этом мы прибор и наблюдатель описываются как квантовые системы.

Таким образом, согласно версии квантовой механики, суперпозиция, наблюдаемая в начале процесса, впоследствии не исчезнет. Обе компоненты суперпозиции продолжат свое существование и после взаимодействия.

Данный факт считается в физике причиной всех концептуальных сложностей, возникающих в квантовой механике.

Наше сознание легко бы смирилось с картиной редукции (исчезновением всех, кроме одной, компонент суперпозиции) но квантовая механика запрещает редукцию (в силу ее линейности). Таким образом, возникает противоречие.

Выход был найден в 1957 г. Х. Эвереттом, предложившим собственную интерпретацию квантовой механики (многомировая интерпретация). Сознание наблюдателя, согласно этой интерпретации, разделяет альтернативы, то есть, в нем существуют все альтернативы (компоненты суперпозиции), но оно их воспринимает раздельно. Другими словами, при видении любой из них, оно не будет видеть остальные.

Источник: https://spravochnick.ru/fizika/kvantovaya_mehanika/problemy_kvantovoy_mehaniki/

Квантовая механика: конец войны интерпретаций

Современные проблемы квантовой механики

Квантовая механика окружена ореолом таинственности.

Зачастую, этот ореол возникает из-за того, что популярные источники излагают материал, не придерживаясь какой либо определенной интерпретации, а иногда пытаются втиснуть современные факты в прокрустово ложе старой Копенгагенской интерпретации.

Со списком из более чем 17 интерпретаций вы можете ознакомиться тут. Весь этот длинный список возник от того, что сами формулы квантовой механики угадали довольно быстро, но очень долго не понимали, что же они означают.

Ингредиенты Копенгагенской интерпретации

Копенгагенская интерпретация занимает особое место: она из первых, если брать хронологию возникнования. Но, главное, она стандарт де-факто популярных объяснений квантовой механики. Именно отсюда идут все проблемы.

Из каких частей состоит современная QM? (Релятивистская) квантовая механика это некий framework из формул, наполненный конкретикой о том, какие элементарные частицы бывают (так называемый зверинец) плюс параметры Стандартной модели. Это 19 магических безразмерных чисел, которые теория никак не объясняет. Но это тема отдельного разговора.

Все, что описано выше, составляет милую теоретикам часть с чистыми формулами. Теперь два дополнительных, магических ингредиента. Коснемся пока одного из них.

Коллапс волновой функции

Он является следствием измерения.

Измерение – это процесс, когда почти невесомые кванто-механические системы приходят в соприкосновение с классическими измерительными приборами, примерно такими, как во времена Нильса Бора:

При том, что для огромного количества экспериментов интерпретация работала как часы, никто из ее сторонников не смог внятно объяснить, что такое измерение. Как правило, возникает рекурсия сепулька сепуление сепулькарий измерение/ наблюдение/ наблюдатель… который измеряет.

Наличие наблюдателя вкупе с тем фактом, что коллапс бывает частичным (при наличии разумного наблюдателя, который умеет делать умозаключение) даже породило интерпретацию Фон Неймана-Винера, которая называется сон разума создает чудовищ Коллапс, создаваемый сознанием. Я ничего не имею против Неймана и Винера – это просто иллюстрация того, как все было плохо. Даже сам разговор об альтернативных интерпретациях стал если не табу, то считался бесполезной болтовней:

Современная ситуация

Последнее время, особенно благодаря исследованиям в области квантовых вычислений, измерительные системы из огромных приборов со стрелками уменьшились до крохотных систем — размером иногда порядка нескольких атомов. И граница между кванто-механической системой и классической системами, которая и до этого была размытой, совсем стерлась.

Почему вот эта система из пары атомов является измерительным устройством, а эта – нет? Где у групп атомов крепятся флажки “Я измерительное устройство”? Копенгагенская интерпретация зашла в философский тупик (что не уменьшает ее исторический и педагогической роли).

Впрочем, физики, работающие в области квантовых вычислений, давно не страдают от этих проблем, и вот почему

Новая надежда

Я не буду здесь рассказывать про Many Worlds Interpretation. Про эту теорию и так есть много информации (и часто неправильной). Из интересных фактов следует отметить, что первым на нее набрел не Эверетт а Шредингер.

Однако нас будет интересовать, а почему же новая теория не завоевала умы сразу же (помимо отторжения из-за того, что она “обкуренная”)? Главным образом потому, что она противоречила наблюдаемым фактам.

Глядя на эксперимент с котом Шредингера, теория предсказывала, что мы должны были увидеть вот это: Но вы никогда не увидите реальных объектов в суперпозиции. Поэтому до поры до времени MWI была лишь сумасшедшей гипотезой, пока не обнаружилась

Quantum Decoherence

Декогеренция была обнаружена на кончике пера в начале 70х. В 80е годы происходит активное исследование этой области. Сейчас без нее не представить современную квантовую механику и, особенно, квантовые компьютеры. В половине статей про квантовые вычисления слово decoherence есть в заголовке, и почти в каждом – в теле статьи.

Декогеренция показывает, что при взаимодействии сложной системы (наблюдатель) с квантовой (или иной другой системой) происходит диагонализация. То есть вместо двух размытых силуэтов живого и мертвого кота система превращается в две почти независимые: грустный наблюдатель, видящий мертвого кота, и радостный, видящий живого кота.

В отличие от коллапса волновой функции, у декогеренции нет необходимости в магии “измерения” – такое происходит с любой системой, у которых много степеней свободы (что верно для мозга и макроскопических наблюдательных приборов).

Сам процесс декогеренции физический, то есть происходит благодаря обмену наблюдателя и объекта фотонами (например), происходит не мгновенно, и само явление распространяется не быстрее скорости света.

А как же коллапс волновой функции?

Позиция сторонников копенгагенской интерпретации очень слабая. Ведь теперь у них не один, а целых два агента, обеспечивающих то, за что был раньше ответственен коллапс. Очевидно, так быть не может.

Хватаясь за соломинку, пытаются объявить декогеренцию объяснением коллапса и даже выставить это как победу (дескать, раньше коллапс был магией, а вот теперь объяснен) Фатальная проблема этого подхода в том, что декогеренция слабее, чем коллапс – она объясняет, почему мы не видим туманную смесь разных состояний котов, но не говорит, что остается только одно состояние кота! То есть приверженец этого подхода должен либо де факто стать приверженцем MWI, либо все равно тащить в теорию пилу, которая будет отсекать “ненужные” ветви.

Правило Борна

Правило Борна это последний недостающий ингредиент для MWI. Грубо говоря, это костыль, объясняющий, как на реальность влияет толщина ветвей. Вы едете на работу.

В одной из ветвей мультиверса ваш мозг переклинило, вы остановились и бросились грабить банк, и вместо работы оказались в кутузке. К счастью, интенсивность этой ветви очень мала. Правило объясняет, что такие тоненькие ветви мы почти не наблюдаем.

Правило есть и в других интерпретациях, в частности, в Копенгагенской. И вот в феврале этого года костыль удалось убрать.

Как декогеренция, выведенная из формализма квантовой механики вытеснила коллапс, так и правило Борна было (наконец!!!) выведено чисто математическим образом. Последний гвоздь в крышку гроба Копенгагенской интерпретации забит месяц назад. История завершилась. Время подводить итоги.

Итоги

Сравним текущее состояние MWI и копенгагенской интерпретации и, как всегда, развеем мифы. Итак, Копенгаген = Формулы + Коллапс Волновой Функции + Правило Борна

MWI = Формулы + … а больше ничего и не надо

Таким образом, MWI является абсолютно минималистичной теорией (ее иногда даже называют NULL interpretation). Она не предполагает никаких дополнительных принципов, кроме формализма, который известен давно.

Многие полагают, что бритва Оккама вырезает MWI, потому что MWI “постулирует существование других, ненаблюдаемых ветвей реальности”. MWI как раз ничего не постулирует. Существование этих ветвей неизбежно следует из формул квантовой механики, как структура пространства внутри черной дыры следует из формул Эйнштейна.

Напротив, чтобы не возникало дополнительных ветвей, вы как раз должны постулировать наличие “пилы”, которая непрерывно эти ветви отпиливает. Ну или лангольеров:

Внезапно, в MWI квантовая механика оказывается детерминированной, объективной и локальной – ну просто теплая ламповая теория. Конечно, детерминирована она только глобально (если смотреть развитие всех ветвей) – это называется birds view, а с точки зрения внутреннего наблюдателя, “лягушки” (frogs view) – события во вселенной случайны (но статистически подчиняются правилу Борна).

(снова из статьи Макса Тегмарка) Некоторые считают, что MWI — это есть отчаянная попытка вернуть детерминированность в науку. Spoiler: старик был прав!

Нет и еще раз нет. На physicsforums я как-то поинтересовался мотивацией die-hard realists, которые вели отчаянную войну с теоремой Белла (в то время еще не все лазейки в экспериментах были закрыты).

Теорема Белла запрещает существование локальных реалистичных теорий во фреймворке квантовой механики – впрочем, к MWI эта теорема не применима. Соответственно, для влюбленных в реализм переход под флаги MWI решал бы все проблемы (как мне казалось).

Но нет – на меня обрушился гром и молнии – цена признания мультиверса для реалистов была абсолютно неприемлемой, более неприемлемой, чем даже расставание с их любимым реализмом. Это подводит к заключению:

MWI – надо заплатить за все всего один раз. Принять безумие в одном –и все остальное станет проще.

Или всю жизнь крутиться в химерах типа коллапса, спутанности, мгновенно менящей состояние спутанных частиц, как бы далеко они ни были, или корпускулярно-волнового дуализма.

Кстати, всем известный Хокинг был за MWI (пруф Martin Gardner reports Hawking saying that MWI is «trivially true»).

P.S

Просьба к публике, читавшей мою предыдущую статью поучаствовать в коротком опросе на тему сознания и Qualia ЗДЕСЬ в Google Forms

Спасибо!

  • physics
  • физика
  • квантовая физика
  • квантовая механика

Источник: https://habr.com/post/444850/

11 величайших нерешенных проблем современной физики

Современные проблемы квантовой механики
В 1900 году британский физик лорд Кельвин объявил: «в физике больше нет ничего нового, все, что можно было открыть, уже открыто. То, что остается — это все более и более точное измерение старого».

В течение трех десятилетий физика показала, что он серьезно ошибался: были открыты квантовая механика и теория относительности Эйнштейна, которые произвели революции в науке. Сегодня ни один физик не посмел бы утверждать, что мы знаем все о вселенной.

Напротив, каждое новое открытие, кажется, открывает ящик Пандоры с еще более глубокими вопросами физики. В этой статье мы поговорим про те вопросы в физике, которые до сих пор остаются без ответа.

Темная материя и энергия

Как бы ученые не пытались объяснить нашу вселенную текущими законами физики, у них ничего не получается. Если учитывать только видимое вещество, то его гравитации не хватит, чтобы удерживать галактики от распада на части. И, дабы объяснить стабильность галактик во вселенной, была введена темная материя — гипотетическое вещество, которое не испускает электромагнитного излучения и взаимодействует с привычной материей только с помощью гравитации. Увы, хотя термину «темная материя» уже 90 лет, ее до сих пор не обнаружили, хотя и нашли потенциального претендента, возможно, полностью состоящего из нее. Как это обычно бывает, темной материи не хватило, чтобы объяснить все несостыковки текущей физики и наблюдаемых явлений. Поэтому, чтобы объяснить расширение Вселенной с ускорением, была введена еще и темная энергия, являющейся космологической константой — иными словами, неизменной энергетической плотностью, равномерно распределенной по Вселенной. Причем, что самое любопытное, привычное нам вещество занимает по массе всего 4% Вселенной, когда темная материя — 22%, а темная энергия вообще 74%. Казалось бы, при таком распространении мы должны найти ее следы, но, увы, пока что этого не произошло.

Почему время идет только вперед?

Пожалуй, этот вопрос задавали себе многие — ведь так хотелось бы вернуться в прошлое и что-то исправить. Физики пытались объяснить эту «стрелу времени», направленную только вперед, энтропией: грубо говоря, мерой хаоса во вселенной. Все, что мы не делали, приводит к увеличению энтропии: это гласит второй закон термодинамики. Яйцо, будучи целым, имеет низкую энтропию. Разбив его на сковородку, вы ее увеличите. Но, казалось бы, в чем проблема собрать обратно желток и белок в скорлупу и склеить ее? Ведь тем самым можно будет уменьшить энтропию и как бы сделать для яйца «машину времени». Увы, это не так — в итоге на «сборку» яйца снова вы потратите некоторое количество энергии, а, значит, снова увеличите общую энтропию Вселенной. Казалось бы, вот и ответ на вопрос: раз энтропия и время связаны, и энтропия может только увеличиваться, то время может идти только вперед. Но и тут хватает загвоздок: так, в будущем Вселенная достигнет равновесия и максимума энтропии — она будет полностью однородной и темной, без всяких звезд и галактик. Энтропия в ней навечно станет константой — значит, и время тоже? Ведь в таком мире без разницы, куда оно течет, в итоге все равно ничего не меняется!  С другой стороны, вспомним начало Вселенной из Большого Взрыва, когда энтропия была минимальной, и с тех пор постоянно растет. Возникает вопрос — почему это происходит именно так, а не наоборот? Увы — мы не знаем ответа на этот вопрос. Так что связь времени и энтропии, конечно, интересная, но все равно не отвечает нам на вопрос, почему время идет вперед и только вперед.

Есть ли параллельные вселенные?

Астрофизики предполагают, что на больших масштабах пространство-время плоское, а не искривленное, то есть оно бесконечно. Однако та область, которую мы видим и называем Вселенной, вполне себе конечна и простирается «всего» на 41 млрд световых лет. А, значит, все частицы нашей Вселенной могут комбинироваться хоть и крайне большим (1010122 степени), но все же конечным числом. А раз пространство-время бесконечно, то на нем будет бесконечной множество различных вселенных, и раз наша Вселенная конечна, то она будет иметь… бесконечное число своих копий. И бесконечное число копий, где вы позавтракали не йогуртом, а бутербродом с сыром. Но, конечно, это чисто математические выкладки, которые мы никак не можем проверить, так что этот вопрос так и остается вопросом.

Почему материи больше, чем антиматерии?

След первого обнаруженного позитрона в пузырьковой камере. В привычном нам мире электрон заряжен отрицательно, а протон — положительно. А может ли быть наоборот? Вполне: последние 50 лет ученые создают антипротоны и позитроны (антиэлектроны), которые отличаются от своих «нормальных» братьев только зарядом и барионным числом (то есть позитрон заряжен положительно). При столкновении частицы с античастицей они аннигилируют, производят огромное количество энергии. Но отсюда возникает вполне логичный вопрос: если материя и антиматерия максимально схожи, то после Большого Взрыва их должно было оказаться поровну. Разумеется, они бы аннигилировали полностью, и вселенная была бы пуста (ну, почти пуста — остались бы одни фотоны). А раз мы существуем, значит, материи в итоге было образовано больше, чем антиматерии. Почему? Никто не знает.

Как измерения разрушают квантовые волновые функции?

Микромир работает совсем не так, как привычная нам реальность. Частицы ведут себя не как шарики, а как волны. Каждая из частиц описывается так называемой волновой функцией — распределением вероятностей, которые говорят нам лишь о том, какими могут быть ее местоположение, скорость и другие свойства. Фактически, частица имеет диапазон значений для каждого из свойств — но только до того момента, пока вы это свойство не станете измерять. Например, если вы захотите узнать местоположение частицы, то волновая функция коллапсирует, и вместо набора различных мест вы получите только одно, которое и образует привычную нам реальность. Этот парадокс, названный проблемой измерения, так и остается без решения.

Что происходит внутри черной дыры?

Куда исчезает информация внутри черной дыры? Если вы бросите в нее зонд, то вы не получите от него никаких данных, так как скорость убегания от черной дыры больше скорости света. Но черные дыры не вечны — существует излучение Хокинга, благодаря которому они медленно испаряются, и в итоге полностью исчезают. При этом само излучение зависит лишь от характеристик черной дыры (ее массы, скорости вращения и так далее), то есть, получается, данные о нашем зонде полностью теряются — без разницы, что вы кинете в черную дыру, зонд или камень с той же массой, на выходе излучение будет абсолютно одинаковое. Но тут мы приходим к противоречию с квантовой физикой: она гласит, что квантовая информация не теряется и не копируется, и, если знать полную информацию о начальном состоянии любого объекта (например, зонда), то можно рассчитать и любое последующее. А «пережеванное» черной дырой вещество, получается, теряет всю свою информацию — парадокс, решение которого играет ключевую роль для построения законов квантовой гравитации, и пока что эта проблема остается без решения.

Что такое гравитация? 

Почти все силы во вселенной определены различными частицами. Так, за электромагнетизм отвечают фотоны, за слабую ядерную силу — W- и Z-бозоны, за сильную ядерную силу — глюоны. Остается гравитация, и с ней есть одна проблема: гипотетическая частица, переносчик гравитации — гравитон — так и не была обнаружена. Теоретически, она не имеет массы и почти не взаимодействует с веществом, но на практике мы лишь получили ограничение сверху на ее массу благодаря гравитационным волнам от столкновения черных дыр, и это не ноль, хотя и очень близкая к нему цифра. Пока мы не нашли гравитон, мы не можем работать с гравитацией так, как с другими фундаментальными взаимодействиями, которые по сути являются обменом частиц. Более того, некоторые физики даже предполагают, что гравитоны работают в дополнительных измерениях за пределами пространства-времени. В любом случае, ответа на вопрос у нас пока нет.

Мы живем в ложном вакууме?

Что мы подразумеваем под вакуумом? Отсутствие чего-либо в данной точке пространства. Ну хорошо, мы можем освободить от частиц небольшой объем (хотя сделать это в случае с нейтрино, которые практически не взаимодействуют с веществом, будет, мягко говоря, трудновато). Остаются еще различные излучения и поля — ладно, попробуем избавиться и от них. А вот это уже не получится — есть и темная энергия, и поле Хиггса, и различные квантовые флуктуации. То есть, получается, вакуум, который мы можем создать, все-таки имеет какую-то отличную от нуля энергию, поэтому он и называется ложным. Отсюда возникает вполне логичный вопрос — раз наш вакуум ложный, то может где-то есть истинный, с нулевой энергией? Или хотя ты чуть менее ложный, где энергия вакуума чуть ниже? Вполне может быть, и отсюда приходит «белый пушной зверек». Частицы имеют одно интересное свойство — возможность туннелировать сквозь вещество, не обращая на него внимание, в значение с другой энергией. Что произойдет, когда хотя бы одна частица переместится в значение с меньшей энергией вакуума, чем в окружающей нас вселенной? Правильно, она потянет за собой все другие, и, в конечном счете, всю вселенную. Чем это грозит нам? Да тем, что мы просто перестанем существовать: ведь все, что мы видим, и все, из чего мы состоим, подчиняется определенным законам физики с определенными константами. «Перескок» в область, где энергия ложного вакуума ниже, чем у нас, изменит и законы, и константы. Да, вселенная от этого существовать не перестанет, она просто изменится. Но вот не факт, что мы останемся жить. Конечно, все написанное выше выглядит страшилкой на ночь — да, собственно, ей и является. По расчетам Хокинга, дабы хотя бы одна частица туннелировала в состояние с другим ложным вакуумом, требуется энергия порядка 100 миллионов ТэВ — это в 10 миллионов раз больше, чем может дать Большой Адронный Коллайдер. Такие значения энергий не встречаются даже в сверхмассивных звездах, так что можете быть спокойны — с крайне высокой вероятностью наша вселенная никуда не денется. Но все же может, если теория ложного вакуума верна.

Что лежит за пределами Стандартной модели?


Стандартная модель — одна из самых успешных физических теорий, которая проходит все проверки на протяжении вот уже больше 40 лет. Эта модель описывает поведение частиц вокруг нас и, например, объясняет, почему они имеют массу. К слову, открытие бозона Хиггса — частицы, которая дает материи массу — как раз является одним из тех экспериментов, в очередной раз подтвердивших Стандартную модель.

Но уже понятно, что вселенная устроена сложнее — взять, например, потерю квантовой информации в черной дыре.

Поэтому становится очевидным, что нужно придумывать новые модели: например, существует Теория струн, которая говорит о том, что фундаментальные взаимодействия возникают в результате колебаний ультрамикроскопических струн с масштабами порядка 10-35 метра.

Это на пару десятков порядков меньше диаметра атомного ядра, и у нас нет абсолютно никаких инструментов для работы на таких масштабах, поэтому мы не можем проверить Теорию струн. Так что ответ на вопрос, что же лежит за пределами Стандартной модели, остается открытым.

Как звуковые волны излучают свет?

Синяя точка — не лазер и не ошибка камеры, это вспышка в пузырьке внутри воды.
Один из тех редких примеров загадок, которые можно наблюдать в лаборатории, но не получается объяснить. Сам эксперимент максимально прост: возьмите немного воды и направьте на нее звуковые волны — внутри нее образуются пузырьки, которые образуются из-за перепада давления от звуковых волн. Разумеется, эти пузырьки быстро схлопываются, однако в этот момент… они излучают свет в виде вспышек, длящихся триллионные доли секунды — явление, называемое сонолюминесценция. Проблема тут в том, что неизвестен источник этого света. Ученые обнаружили, что внутри пузырьков на долю секунды температура достигает десятков тысяч градусов, откуда строятся абсолютно фантастические теории, начиная от крошечных реакций ядерного синтеза вплоть до электрического разряда. И хотя существует множество снимков этого процесса, до сих пор нет хорошего объяснения происходящего.

Есть ли порядок в водовороте хаоса?


Школьный пример — зная состояние воды в левой трубке, его можно вычислить для правой.
Отличным примером того, что даже в школьном курсе физики есть задачи тысячелетия, за решения которых предлагают миллион долларов, являются уравнения Навье-Стокса. По сути это система дифференциальных уравнений, которая описывает движение вязкой ньютоновской жидкости. Проблема в том, что нахождение общего решения в случае пространственного потока усложняется тем, что оно нелинейно и сильно зависит от начальных и граничных условий. И хотя в частных случаях решения есть (думаю, все в школе решали задачки по нахождению скорости потока воды в трубах разного диаметра), мы даже не знаем, есть ли оно в общем случае — а ведь это важно даже для таких, казалось бы, банальных вещей, как правильный прогноз погоды.

И это далеко не все проблемы, с которыми сталкивается современная физика, и чем больше мы в них углубляемся, тем больше понимаем, что все наши знания, накопленные за столетия и даже тысячелетия, или не верны, или крайне поверхностны. Но это не повод опускать руки — наоборот, это шанс узнать больше об окружающем нас мире и пустить эти знания нам же на благо.

Источник: https://www.iguides.ru/main/other/11_samykh_bolshikh_zagadok_v_sovremennoy_fizike/

Парадоксы квантовой механики не дают физикам спать

Современные проблемы квантовой механики

Квантовые физики так же поражаются квантовой механике, как и вы.

В недалеком 2011 году состоялась конференция «только по приглашениям» под названием «Квантовая физика и природа реальности» (QPNR), тщательный разбор которой есть на Gizmag.com.

Многие видные физики, математики и философы от науки, основная деятельность которых — разбор и интерпретация квантовой механики — собрались, чтобы привести мысли науки в порядок.

Вы наверняка знаете, что квантовая механика настолько парадоксальна, что порой наводит на мысли о существовании высшего разума. Любопытно то, что светила науки так и не сошлись во мнении относительно природы квантовой физики. Знаете, почему?

Квантовая механика (КМ), включая разделение на квантовую электродинамику и квантовую теорию поля, представляет собой самую удачную научную теорию, когда-либо созданную.

Погрешности во время экспериментов едва ли составляют одну миллиардную долю. При всем это суть квантмеха уходит от понимания как песок сквозь пальцы — и это порождает парадоксы, взаимоисключающие параграфы и «жуткие действия».

Проще говоря, хотя КМ работает на диво хорошо, как и почему она работает, никто не знает.

Многие физики проводят бессонные ночи, ломая голову над природой квантовой механики, поскольку появление физики квантовой информации сулит нам много благ (квантовую криптографию, квантовые компьютеры и прочие «тайные разработки»), но понимание этой самой природы квантовой механики остается непреодолимым барьером. Квантмех работает вне зависимости от интерпретация, но интуиция оказывается слишком слабой, когда нужно прояснить странные аспекты КМ. За последние тридцать лет ученые буквально поселились в палатках перед барьером, силясь понять и договориться о том, почему и как работает квантовая механика.

Что же прояснилось на конференции QPNR? И хотя мы намеренно опустим математические тонкости, вы обязательно получите ответы на некоторые волнующие вас вопросы. Все ученые на конференции были опрошены, в некоторых случаях можно было ать более одного раза, но чтобы не путать вас, мы упростили результаты. Равно как и вопросы.

Введение в квантовую механику

Первым вопросом, с которого мы начнем разбирать опрос QPNR, станет проблема квантового измерения. Это даст нам возможность пролить свет на некоторые основные понятия в КМ.

В квантовой механике волновая функция объекта описывает все измеримые свойства этого объекта. Это полное описание того, что называется квантовым состоянием объекта.

Волновая функция описывается знаменитым уравнением Шрёдингера, который, по слухам, написал его во время отдыха с любовницами в ответ на брошенный ему вызов со стороны светил науки.

Уравнение описывает поведение волновой функции в ответ на проявления внешней среды.

Математические детали сейчас не важны, за исключением одного: уравнение Шрёдингера линейно. Если вы сложите несколько разных решений в линейное уравнение, их сумма тоже будет решением.

Это называется принципом суперпозиции и является не физическим результатом, а скорее свойством основной математической структуры в КМ.

Суть в том, что существует класс волновых функций, который называется квантовыми суперпозициями, одновременно описывающие разные квантовые состояния объекта.

Давайте поставим объект в суперпозицию, измерим его и посмотрим, что получится согласно стандарту КМ. Возьмем два одинаковых мяча: красный и синий. Заставим их вращаться с двумя квантами (один квант обозначает половину единицы) углового момента (который мы называем спином).

У красного мяча спин будет верхним, у синего — нижним. Квантовое состояние двух мячей до того, как они столкнутся, будет красный-верх + синий-низ. Если вы измерите спин двух мячей, вы обнаружите, что у красного мяча спин всегда +1, а у синего всегда -1, а значит сумма двух будет равна нулю.

Это важно, поскольку суммарный спин системы является константой в КМ.

Теперь столкнем мячи. Если их поверхности обладают свойствами, похожими на те, которые нам известны, два мяча могут передать спин один другому.

Самыми очевидными результатами будут такие: ничего не изменится (красный-верх + синий-низ, что мы обозначаем как [1 -1]; спин изменится (красный-низ + синий-верх, или [-1 1]; спин обнулится (красный-ноль + синий-ноль, или [0 0].

Поскольку может произойти любое из трех событий, до того, как мы измеряем состояние мячей, они находятся в состоянии запутанной суперпозиции. Их квантовое после столкновения и перед измерением будет [1 -1] + [-1 1] + [0 0].

(Для квантовых скептиков: если мы измерим разнонаправленные спины красного и синего мячей, теорема Белла говорит нам, что корреляция между результатами измерения будет сильнее, чем возможно в классической и вышеописанной системах. Этот теоретический результат наблюдается и экспериментально, доказывая, что спин каждого из шаров после столкновения не имеет определенного значения, пока не измеряется).

Измерим спин красного мяча после столкновения. Если он равен 1, квантовое состояние двух мячей после измерения будет [1 -1] — две другие суперпозиции исчезают, поскольку не согласуются с измерением.

То же самое, если результат измерения -1 или 0, соответственно, квантовое состояние будет [-1 1] и [0 0].

Любое возможное состояние, несовместимое с результатом измерения, исчезает, даже если оно существовало в исходной суперпозиции.

Проблема квантового измерения

Что случится, если мы решим полностью довериться квантовой механике? В конце концов, она может описать все измеримые явления.

Инструмент, который измеряет спин, является достаточно сложной квантовой системой, а человек, который владеет этим инструментом — еще более сложной квантовой системой.

Если у меня может быть три разных результата измерения спина, почему бы мне не войти в суперпозицию измерения каждого из трех возможных результатов?

Насколько нам известно, ни один человек не ощущает себя в состоянии суперпозиции — мы даже не знаем, каково это чувство на вкус и цвет. Результат измерения, как описано выше, согласно нашему опыту, равен одному определенному числу.

Чтобы перевести наблюдения квантовой механики «на язык нашего опыта», стандартная КМ предполагает, что измерительные приборы и наблюдатели классические в своем поведении.

Не существует суперпозиции классических измерительных приборов и наблюдателей, поэтому измерение дает нам один определенный ответ, чего мы, собственно, и ожидаем.

Такое заключение вполне закономерно, но физики от этого не стали лучше спать и меньше спорить.

Проблема в том, что есть масса причин полагать, что измерительные приборы и наблюдатели не являются на самом деле классическими в своем поведении. Скорее их волновая функция в сочетании с уравнением Шрёдингера дает полное описание возможного поведения объекта.

Неклассическое поведение больших измерительных приборов было доказано в рамках квантовой механики теоремой неразрешимости. Если структура квантовой механики сохраняется для всех систем, в конце процесса измерения наблюдатель, измеряющая аппаратура и измеряемый объект находятся в квантовой суперпозиции всех состояний в соответствии с волновой функцией измеряемого объекта.

Учитывая это, проблему квантового измерения можно озвучить так: почему измерение, которое проводится большими и сложными квантовыми устройствами (включая нас самих), выдает определенный и единичный результат? Если какой-то аспект в КМ сводит процесс измерения к определенному результату, то какой именно этот аспект? Можно ли вывести его в рамках существующей квантовой теории или же ее нужно расширить?

Оригинальные понятия коллапса волновой функции и классического наблюдателя были попыткой ответить на этот вопрос, но теорема неразрешимости показала, что этого недостаточно.

Некоторые ученые предположили, что уравнение Шрёдингера должно быть изменено, чтобы включить некоторые нелинейные члены, которые будут выдавать ясные состояния во время измерения.

У этих предположений существует ряд проблем — хотя бы потому, что стандартная квантовая механика работает слишком хорошо, чтобы можно было запросто изменить фундаментальное уравнение, не испортив его хорошие части.

В многомировой интерпретации Эверетта проведение измерений с различными результатами приводит к образованию множества альтернативных вселенных — по одной для каждого возможного результата.

Это позволяет решить проблему измерения: наблюдатель распадается вместе с измерительным прибором, поэтому не замечает кратности.

Но в таком случае вам придется поверить в то, что вылет фотона из атома рождает новые вселенные…

Декогеренция, которая является следствием взаимодействия квантовой системы с ее окружением, может приводить к тому, что суперпозиционные состояния волновой функции неспособны взаимодействовать друг с другом, в результате чего их вероятности становятся независимыми. Некоторые полагают, что именно в этот момент волновая функция коллапсирует, другие — что это вообще не имеет никакого отношения к проблеме измерения, поскольку все вокруг создает суперпозицию, запутываясь с окружающей средой.

Что показал опрос физиков на QPNR на тему проблемы квантового измерения?

Проблемы нет (уйдет с появлением новых данных) — 20 %

Решение в декогеренции — 11 %

Решение где-то еще — 11 %

Серьезно угрожает квантовой механике — 18 %

Ничего из вышеуказанного — 20 %

С таким же успехом физики могли отвечать наугад.

Кот Шрёдингера и макроскопические суперпозиции

Мысленный эксперимент под названием «Кот Шрёдингера» известен многим. Кота, разумную и сложную квантовую систему, помещают в коробку.

В коробке также находится молоток, активируемый радиоактивным излучением, который разобьет стеклянную бутылку с цианидом, как только обнаружит радиацию. Наконец, в коробке есть очень слабый радиоактивный источник, излучающий примерно одну частицу в час.

Коробка звуконепроницаема, непрозрачна и наглухо закрыта. Вы сидите снаружи. Что будет с котом через час: будет он жив или мертв?

Суть эксперимента в том, что условия точно описываются квантовой механикой (распадется ли радиоактивный атом?), а сам он представлен классической проблемой (жив кот или мертв?). Мы хотим посмотреть, на каком этапе результат эксперимента перестанет находиться в компетенции КМ и станет обычным классическим «да» или «нет».

Основной аргумент таков: пока коробка не откроется, кот будет находиться в квантовой суперпозиции мертвого и живого кота.

С другой стороны, если кот выступает в роли наблюдателя, он как минимум будет знать, что он жив.

(Осознание котом того факта, что он умер, зависит от существования загробной жизни — и такое предлагается в квантовой механике). Обсуждение тянется бесконечно, вариантов ответов — масса.

В многомировой интерпретации судьба кота не так печальна. Когда коробка открывается, вселенная расщепляется на две: в одной кошка живет дальше, в другой нет.

Кот Шрёдингера стал отдельным вопросом в квантовой механике по опросу QPNR: «Возможны ли суперпозиции макроскопически различимых состояний (вроде мертвого/живого кота) в принципе, в лаборатории или принципиально невозможны?

В принципе возможны — 55 %

Возможны в лабораторных условиях — 30 %

Невозможны в принципе — 15 %

Этот вопрос очень важен, поскольку его можно проверить экспериментально.

Крупнейшей системой, которая была успешно введена в состояние квантовой суперпозиции, является квантовый микрофон весом в нанограмм (10 триллионов атомов) объемом около 450 кубических микрон.

Намного меньше кота, но больше того, что связывают с обычными атомными и субатомными взаимодействиями — то есть тем, что обычно разбирает квантмех.

Активное развитие создания квантовой суперпозиции больших объектов, наверное, основная причина того, почему ученые позитивно смотрят на макроскопические суперпозиции. Если идея работает на практике, со временем она найдет все больше и больше сторонников.

Одной из проблем в КМ является физическая реальность квантовых состояний. В опросе QPNR был такой вопрос: квантовое состояние только описывает реальность (эпистемическое) или является реальным, как электрическое поле, то есть его можно измерить (онтическое)?

Эпистемическое — 27 %

Онтическое — 24 %

И то, и другое — 33 %

Сугубо статистическое — 3 %

Другое — 13 %

Случайность в квантовой механике

Другим фундаментальным вопросом в квантовой механике является случайность отдельных квантовых событий, вроде того же распада радиоактивного атома.

Квантовая механика предсказывает поведение, которое согласуется со случайным распадом с характерным периодом полураспада для этого распада (извините за тавтологию).

Но случаен ли процесс распада, или просто кажется таким? В опросе QPNR было четыре варианта: скрытый детерминизм; только кажется случайным; минимальная случайность и случайность как фундаментальный принцип природы.

Скрытый детерминизм — это точка зрения Эйнштейна (мозг которого изучают и по сей день) — существует скрытый заводной механизм в основе того, что мы воспринимаем как квантовую реальность. Это явление на самом деле классическое и механистическое, но в настоящее время мы не можем его наблюдать.

Вселенная только кажется случайной в многомировых интерпретациях, похожих на эвереттову. Восприятие случайности — это всего лишь побочный эффект обнаружения себя в одной из новых ветвей вселенной.

И самая сложная часть заключается в разнице между минимальной случайностью и случайностью — фундаментальным принципом природы. Последнее вообще ускользает от понимания.

Грубо говоря, минимальная случайность описывает Вселенную, в которой существуют явления, которые приводят к непредсказуемым результатам, а понятие фундаментальной случайности описывает вселенную, в самой основе работы которой лежит случайность.

В отличие от скрытого детерминизма, фундаментальная случайность распространяется и на подуровни реальности, в случае существования таковых.

Результаты опроса:

Скрытый детерминизм — 0 %

Очевидная случайность — 7 %

Минимальная случайность — 40 %

Фундаментальная случайность — 53 %

Отсутствие поддержки скрытого детерминизма (прости, Эйнштейн), судя по всему, связано с экспериментальным подтверждением теоремы Белла. Согласно этой теореме, в нашей Вселенной не может быть скрытых параметров.

Забавно, что не все сторонники Эверетта согласны с тем, что наблюдаемая случайность является следствием нашего выбора в этой вселенной.

А вот два самых странных понятия набрали максимум. Похоже, это тот самый момент, когда неуверенность и неопределенность набирают силу уверенности и определенности.

Наука или предубеждение?

Чтобы подвести итоговую черту подо всей этой неописуемостью и поставить «жирную точку в интерпретации квантовой механики», спросим физиков, насколько их выбор зависит от личных философских предубеждений?

Сильно — 58 %

Слабо — 27 %

Не имеет значения — 15 %.

Честно говоря, такой опрос пахнет тем, что квантовая механика близка к статусу псевдонауки. Насколько точной может быть псевдонаука? Думаю, ответом на вопрос Ричарда Фейнмана «но как она вообще может быть такой?» в отношении квантовой механики будет стихотворение Федора Тютчева «Silentium!».

Источник: https://Hi-News.ru/science/paradoksy-kvantovoj-mexaniki-ne-dayut-fizikam-spat.html

Современные проблемы квантовой механики

Современные проблемы квантовой механики

В 1909—1910 гг. Э. Резерфордом были проведены экспериментальные исследования рассеяния α-частиц тонким слоем вещества. Как показали эти исследования, большинство α-частиц, пронизывающих тонкий слой вещества, рассеиваются силовыми центрами, которые действуют на них с силой, обратно пропорциональной квадрату расстояния.

Некоторые сравнительно немногие частицы отклонялись на угол 90° и более; по-видимому, они встретились с очень сильными электрическими полями. Результаты этого исследования позволили Резерфорду в 1911 г. сформулировать планетарную модель атома. По модели Резерфорда, атом состоит из положительного ядра гораздо меньших размеров, нежели атом, — порядка 10-13 см.

Вокруг ядра вращаются электроны. Общий заряд атома равен нулю, поэтому заряд ядра по абсолютной величине равен nе, где n — число электронов в атоме, е — заряд электрона. Резерфорд полагал также, что число электронов в атоме должно быть равно порядковому номеру элемента в периодической системе Менделеева.

Но модель Резерфорда не объясняла многих выявленных к тому времени закономерностей излучения атомов, вид атомных спектров и др.

Более совершенную квантовую модель атома предложил в 1913 г. молодой датский физик Н. Бор, работавший в лаборатории Резерфорда.

Бор понял, что для построения теории, которая объясняла бы и результаты опытов по рассеянию α -частиц, и устойчивость атома, и сериальные закономерности, и ряд других экспериментальных данных, нужно отказаться от ряда принципов классической физики.

Бор взял за основу модель атома Резерфорда и дополнил ее новыми гипотезами, которые не следуют или даже противоречат классическим представлениям. Эти гипотезы известны как постулаты Бора. Они сводятся к следующему.

1. Каждый электрон в атоме может совершать устойчивое орбитальное движение по определенной орбите, с определенным значением энергии, не испуская и не поглощая электромагнитного излучения.

В этих состояниях атомные системы обладают энергиями, образующими дискретный ряд: Е1, Е2, …, Еn. Состояния эти характеризуется своей устойчивостью.

Всякое изменение энергии в результате поглощения или испускания электромагнитного излучения может происходить только скачком из одного состояния в другое.

2. Электрон способен переходить с одной стационарной орбиты на другую. Только в этом случае он испускает или поглощает определенную порцию энергии монохроматического излучения определенной частоты.

Эта частота зависит от уровня изменения энергии атома при таком переходе.

Если при переходе электрона с орбиты на орбиту энергия атома изменяется от Еm до Еn, то испускаемая или поглощаемая частота определяется условием

Эти постулаты Бор использовал для расчета простейшего атома (водорода), рассматривая первоначально наиболее простую его модель: неподвижное ядро, вокруг которого по круговой орбите вращается электрон. Объяснение спектра водорода было большим успехом теории Бора.

Квантовые постулаты Бора были лишь первым шагом в создании теории атома, поэтому пришлось воспользоваться следующим приемом: сначала задача решалась при помощи классической механики (заведомо неприменимой полностью к внутриатомным движениям), а затем из всего непрерывного множества состояний движения, к которым приводит классическая механика, на основе квантовых постулатов отбирались квантовые состояния. Несмотря на все несовершенство этого метода, он привел к большим успехам — позволил объяснить сложные закономерности в атомных и молекулярных спектрах, осмыслить природу химических взаимодействий и др. Такой подход, по сути, является частным случаем общего принципа, играющего важную роль в современной теоретической физике — принципа соответствия, который гласит, что всякая неклассическая теория в соответствующем предельном случае переходит в классическую.

Важным достижением Бора и других исследователей было развитие представления о строении многоэлектронных атомов. Предпринятые шаги в развитии теории строения более сложных (чем водород) атомов и объяснении структуры их спектров принесли некоторые успехи, однако здесь исследователи столкнулись с большими трудностями.

Введение четырех квантовых чисел, характеризующих состояния электрона в атоме, установление принципа Паули (согласно которому две тождественный частицы с полуцелым спином не могут одновременно находиться в одном состоянии) и объяснение периодической системы Менделеева — большие успехи теории атома Бора. Однако они не означали, что эту теорию можно считать завершенной.

Во-первых, постулаты Бора и многие принципы его теории имели характер непонятных, ни откуда не следуемых утверждений, которые еще должны получить свое обоснование.

Во-вторых, в некоторых даже довольно простых случаях применение данной теории встречало непреодолимые трудности; так, например, попытки теоретически рассчитать даже такой, казалось бы, простой атом, как атом гелия, не привели к успеху. Физики ясно понимали неудовлетворительность боровской теории атома.

Таким образом, в первой четверти XX в. перед физикой все еще стояла задача поиска новых путей развития теории атомных явлений. Ее решение потребовало отказа от ряда давно установленных понятий и выработки совершенно новых теоретических представлений и принципов.

1.3 Создание нерелятивистской квантовой механики

Такие новые представления и принципы были созданы плеядой выдающихся физиков XX в. в 1925—1927 гг.: В. Гейзенберг установил основы так называемой матричной механики; Л. де Бройль, а за ним Э. Шредингер разработали волновую механику. Вскоре выяснилось, что и матричная механика, и волновая механика — различные формы единой теории, получившей название квантовой механики.

К созданию матричной механики В. Гейзенберг пришел в результате исследований спектральных закономерностей, а также теории дисперсии, где атом представлялся некоторой символической математической моделью — как совокупность виртуальных гармонических осцилляторов.

Представления об атоме как о системе, состоящей из ядра и вращающихся вокруг него электронов, которые обладают определенной массой, движутся с определенной скоростью по определенной орбите, нужно понимать лишь как аналогию для установления математической модели.

Указанный метод исследования и развил Гейзенберг, распространив его вообще на теорию атомных явлений.

В 1926 г. Гейзенберг впервые высказал основные положения квантовой механики в матричной форме.

Теория атомных явлений, по Гейзенбергу, должна ограничиваться установлением соотношений между величинами, которые непосредственно измеряются в экспериментальных исследованиях («наблюдаемыми» величинами, в терминологии Гейзенберга) — частотой излучения спектральных линий, их интенсивностью, поляризацией и т.п. «Ненаблюдаемые» величины, такие, как координаты электрона, его скорость, траектория, по которой он движется, и т.д., не следует использовать в теории атома.

Однако в согласии с принципом соответствия новая теория должнa определенным образом соответствовать классическим теориям, т.е. соотношения величин новой теории должны быть аналогичными соотношениям классических величин.

При этом каждой классической величине нужно найти соответствующую ей квантовую величину и, пользуясь классическими соотношениями, составить соответствующие им соотношения между найденными квантовыми величинами.

Такие соответствия могут быть получены только из операций измерения.

Анализируя закономерности измерения величин в квантовой механике, Гейзенберг приходит к важному принципиальному результату о невозможности одновременного точного измерения двух канонически сопряженных величин и устанавливает так называемое соотношение неопределенностей

где Δqi— точность измерения какой-либо из координат частицы; Δpi — точность одновременного измерения соответствующего импульса; h— постоянная Планка.

Этот принцип является основой физической интерпретации квантовой механики.

Второе направление в создании квантовой механики сначала развивалось в работах Л. де Бройля. Он высказал идею о волновой природе материальных частиц. На основании уже установленного факта одновременно и корпускулярной, и волновой природы света, а также оптико-механической аналогии де Бройль пришел к идее о существовании волновых свойств любых частиц материи.

На первые работы де Бройля, в которых высказывалась идея волн, связанных с материальными частицами, не обратили серьезного внимания. Де Бройль впоследствии писал, что высказанные им идеи были приняты с «удивлением, к которому несомненно примешивалась какая-то доля скептицизма».

Но не все скептически отнеслись к идеям де Бройля. Особенно сильное влияние идеи де Бройля оказали на Э. Шрёдингера, который увидел в них основу для создания новой теории квантовых процессов. В 1926 г. Шрёдингер, развивая идеи де Бройля, построил так называемую волновую механику.

Шрёдингер приходит к мысли, что квантовые процессы следует понимать как некие волновые процессы, характеризуемые волновой функцией Ψ.

Тогда образ материальной точки, занимающей определенное место в пространстве, строго говоря, является приближенным и может быть сохранен только при рассмотрении макропроцессов, подобно тому как мы пользуемся представлением о световом луче, которое теряет смысл, если рассматривать явления дифракции и интерференции.

Функция Ψ  должна удовлетворять волновому уравнению («уравнение Шрёдингера»). Шрёдингер поставил вопрос о связи его теории с теорией Гейзенберга и показал, что при всем различии исходных физических положений они математически эквивалентны.

Иначе говоря, в квантовой механике разница между полем и системой частиц исчезает. Так, например, электрон, вращающийся вокруг ядра, можно представить как волну, длина которой зависит от ее скорости.

Там, где укладывается целое число длин волн электрона, волны складываются и образуют боровские разрешенные орбиты.

А там, где целое число длин волн не укладывается, гребни волн компенсируют впадины, там орбиты не будут разрешены.

Волновая механика получила прямое экспериментальное подтверждение в 1927г., когда К-Дж. Дэвиссон и П. Джермер обнаружили явление дифракции электронов. Кроме того, выяснилось, что правильно и количественное соотношение для длин «волн де Бройля».

Квантовая механика — теоретическая основа современной химии. Ядро атома с порядковым номером N и массовым числом М содержит N протонов и (М- N) нейтронов (всего М нуклонов). Число электронов оболочек равно числу протонов в ядре, поэтому в нормальном состоянии атом нейтрален.

Электроны распределяются на оболочках в строгом порядке: на первой к ядру не более 2 электронов; на второй — не более 8; на третей — не более 18 и т.д. Когда два атома сталкиваются, они или объединяются вместе, обобществляя свои оболочки, или вновь расходятся после перераспределения электронов.

Число электронов на внешней оболочке и определяет химическую активность элемента.

С помощью квантовой теории удалось построить также более совершенные теории твердого тела, электрической проводимости, термоэлектрических явлений и т.д. Она дала основания для построения теории радиоактивного распада, а в дальнейшем стала базой для ядерной физики.

Вслед за основополагающими работами Шрёдингера по волновой механике были предприняты первые попытки релятивистского обобщения квантово-механических закономерностей, и уже в 1928 г. П. Дирак заложил основы релятивистской квантовой механики.

1.4 Проблема интерпретации квантовой механики. Принцип дополнительности

Созданный группой физиков в 1925—1927 гг. формальный математический аппарат квантовой механики убедительно продемонстрировал свои широкие возможности по количественному охвату значительного эмпирического материала; не оставалось сомнений, что квантовая механика пригодна для описания определенного круга явлений.

Вместе с тем исключительная абстрактность квантово-механических формализмов, значительные отличия от классической механики (замена кинематических и динамических переменных абстрактными символами некоммутативной алгебры, отсутствие понятия  электронной  орбиты,  необходимость  интерпретации формализмов и др.) рождали ощущение незавершенности, неполноты новой теории.

В результате возникло мнение о необходимости ее завершения.

Возникла дискуссия о том, каким путем это нужно делать. А. Эйнштейн и ряд физиков считали, что квантово-механическое описание физической реальности существенно неполно.

Иначе говоря, созданная теория не является фундаментальной теорией, а лишь промежуточной ступенью по отношению к ней, поэтому ее необходимо дополнить принципиально новыми постулатами и понятиями, т.е.

дорабатывать ту часть оснований новой теории, которая связана с ее принципами.

Другие физики (Н. Бор, В. Гейзенберг, М. Борн и др.

) считали, что новая теория является фундаментальной и дает полное описание физической реальности, а «прояснить положение вещей можно было здесь только путем более глубокого исследования проблемы наблюдений в атомной физике» *.

Иначе говоря, Бор и его единомышленники полагали, что «доработку» квантовой механики следует вести по линии уточнения той части ее оснований, которые связаны не с принципами теории, а с ее методологическими установками, по линии интерпретации созданного математического формализма. Разработка методологических установок квантовой механики, являвшаяся важнейшим звеном в интерпретации этой теории, продолжалась вплоть до конца 40-х гг. Завершение выработки этой интерпретации означало и завершение научной революции в физике, начавшейся в конце XIX в.

Основной отличительной особенностью экспериментальных исследований в области квантовой механики является фундаментальная роль взаимодействия между физическим объектом и измерительным устройством. Это связано с корпускулярно-волновым дуализмом.

И свет, и частицы проявляют в различных условиях противоречивые свойства, в связи с чем, о них возникают противоречивые представления.

В одном типе измерительных приборов (дифракционная решетка) они представляются в виде непрерывного поля, распределенного в пространстве, будь то световое поле или поле, которое описывается волновой функцией.

В другом типе приборов (пузырьковая камера) эти же микроявления выступают как частицы, как материальные точки. Причина корпускулярно-волнового дуализма, по Бору, в том, что сам микрообъект не является ни волной, ни частицей в обычном понимании.

Невозможность провести резкую границу между объектом и прибором в квантовой физике выдвигает две задачи: 1)каким образом можно отличить знания об объекте от знаний о приборе; 2) каким образом, различив их, связать в единую картину, теорию объекта.

Вследствие того что сведения о микрообъекте, о его характеристиках получают в результате его взаимодействия с классическим прибором (макрообъёктом), микрообъект можно интерпретировать только в классических понятиях, т.е. использовать классические представления о волне и частице.

Мы как бы вынуждены говорить на классическом языке, хотя с его помощью нельзя выразить все особенности микрообъекта, который не является классическим.

Поэтому первая задача разрешается введением требования описывать поведение прибора на языке классической физики, а принципиально статистическое поведение микрочастиц — на языке квантово-механических формализмов.

Вторая задача разрешается с помощью принципа дополнительности: волновое и корпускулярное описания микропроцессов не исключают и не заменяют друг друга, а взаимно дополняют друг друга. При одном представлении микрообъекта используется причинное описание соответствующих процессов, в другом случае — пространственно-временное. Единая картина объекта синтезирует эти два описания.

Источник: https://student.zoomru.ru/kse/sovremennye-problemy-kvantovoj-mehaniki/162125.1331049.s2.html

Современные проблемы квантовой механики (стр. 1 из 4)

Современные проблемы квантовой механики

РЕФЕРАТ

“Современные проблемы квантовой механики”

студента 5 курса

Ткаченко Ивана Сергеевича

Специальность 010501 – “Прикладная математика и информатика”

Кемерово 2010

ВВЕДЕНИЕ

В истории развития физики было немало революций, кардинально изменявших научную парадигму и взгляды ученых на методы познания и устройство мира. Однако то, что произошло с естествознанием в первой четверти XX века, не было очередной сменой основных законов.

Если раньше все в окружающем нас мире было предсказуемо, то с появлением квантовой механики он стал случайным. Мы постараемся разобраться, как же повлияла квантовая механика на дальнейшее развитие науки.

Рассмотрим основные аспекты и главные проблемы квантовой механики, которые имеют место быть в настоящее время.

ПРЕДМЕТ КВАНТОВОЙ МЕХАНИКИ

Квантовая механика – теория, устанавливающая способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов), а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми в макроскопических опытах.

Законы квантовой механики составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение ядер атомных, изучать свойства элементарных частиц.

Поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, законы квантовой механики лежат в основе понимания большинства макроскопических явлений.

Квантовая механика позволила, например, объяснить температурную зависимость и вычислить величину теплоёмкости газов и твёрдых тел, определить строение и понять многие свойства твёрдых тел (металлов, диэлектриков, полупроводников).

Только на основе квантовой механики удалось последовательно объяснить такие явления, как ферромагнетизм, сверхтекучесть, сверхпроводимость, понять природу таких астрофизических объектов, как белые карлики, нейтронные звёзды, выяснить механизм протекания термоядерных реакций в Солнце и звёздах. Существуют также явления, в которых законы квантовой механики непосредственно проявляются в поведении макроскопических объектов.

Ряд крупнейших технических достижений 20 в. основан по существу на специфических законах квантовой механики.

Так, квантово-механические законы лежат в основе работы ядерных реакторов, обусловливают возможность осуществления в земных условиях термоядерных реакций, проявляются в ряде явлений в металлах и полупроводниках, используемых в новейшей технике, и т.д.

Фундамент такой бурно развивающейся области физики, как квантовая электроника, составляет квантово-механическая теория излучения.

Законы квантовой механики используются при целенаправленном поиске и создании новых материалов (особенно магнитных, полупроводниковых и сверхпроводящих). Таким образом, квантовая механика становится в значительной мере “инженерной” наукой, знание которой необходимо не только физикам-исследователям, но и инженерам.

ИСТОРИЯ

Квантовая теория родилась в 1901 г., когда Макс Планк предложил теоретический вывод о соотношении между температурой тела и испускаемым этим телом излучением, вывод, который долгое время ускользал от других ученых.

Как и его предшественники, Планк предположил, что излучение испускают атомные осцилляторы, но при этом считал, что энергия осцилляторов (и, следовательно, испускаемого ими излучения) существует в виде небольших дискретных порций, которые Эйнштейн назвал квантами. Энергия каждого кванта пропорциональна частоте излучения.

Хотя выведенная Планком формула вызвала всеобщее восхищение, принятые им допущения оставались непонятными некоторое время, так как противоречили классической физике. В 1905 г.

Альберт Эйнштейн воспользовался квантовой теорией для объяснения некоторых аспектов фотоэлектрического эффекта – испускания электронов поверхностью металла, на которую падает ультрафиолетовое излучение. Попутно Эйнштейн отметил кажущийся парадокс: свет, о котором на протяжении долгого времени было известно, что он распространяется как непрерывные волны, при поглощении и излучении проявляет дискретные свойства.

Примерно через восемь лет Нильс Бор распространил квантовую теорию на атом и объяснил частоты волн, испускаемых атомами, возбужденными в пламени или в электрическом разряде.

Эрнест Резерфорд показал, что масса атома почти целиком сосредоточена в центральном ядре, несущем положительный электрический заряд и окруженном на сравнительно больших расстояниях электронами, несущими отрицательный заряд, вследствие чего атом в целом электрически нейтрален.

Бор предположил, что электроны могут находиться только на определенных дискретных орбитах, соответствующих различным энергетическим уровням, и что “перескок” электрона с одной орбиты на другую, с меньшей энергией, сопровождается испусканием фотона, энергия которого равна разности энергий двух орбит.

Частота, по теории Планка, пропорциональна энергии фотона. Таким образом, модель атома Бора установила связь между различными линиями спектров, характерными для испускающего излучение вещества, и атомной структурой.

Несмотря на первоначальный успех, модель атома Бора вскоре потребовала модификаций, чтобы избавиться от расхождений между теорией и экспериментом. Кроме того, квантовая теория на той стадии ещё не давала систематической процедуры решения многих квантовых задач.

Однако стало ясно, что классическая физика неспособна объяснить тот факт, что движущийся с ускорением электрон не падает на ядро, теряя энергию при излучении эл.-м. волн.

Новая существенная особенность квантовой теории проявилась в 1924 г.

, когда Луи де Бройль выдвинул радикальную гипотезу о волновом характере материи: если электромагнитные волны, например свет, иногда ведут себя как частицы (что показал Эйнштейн), то частицы, например электрон при определенных обстоятельствах, могут вести себя как волны.

Таким образом в микромире стёрлась граница между классическими частицами и классическими волнами.

В формулировке де Бройля частота, соответствующая частице, связана с её энергией, как в случае фотона (частицы света), но предложенное де Бройлем математическое выражение было эквивалентным соотношением между длиной волны, массой частицы и её скоростью (импульсом). Существование электронных волн было экспериментально доказано в 1927 г. Клинтоном Дж. Дэвиссоном и Лестером Х. Джермером в Соединенных Штатах и Джорджем Паджетом Томсоном в Англии.

В свою очередь это открытие привело к созданию в 1933 г. Эрнстом Руской электронного микроскопа. Под впечатлением от комментариев Эйнштейна по поводу идей де Бройля Эрвин Шрёдингер предпринял попытку применить волновое описание электронов к построению последовательной квантовой теории, не связанной с неадекватной моделью атома Бора.

В известном смысле он намеревался сблизить квантовую теорию с классической физикой, которая накопила немало примеров математического описания волн. Первая попытка, предпринятая им в 1925 г., закончилась неудачей.

Скорости электронов в теории Шрёдингера были близки к скорости света, что требовало включения в неё специальной теории относительности Эйнштейна и учета предсказываемого ею значительного увеличения массы электрона при очень больших скоростях.

Одной из причин постигшей Шрёдингера неудачи было то, что он не учел наличия специфического свойства электрона, известного ныне под названием спина (вращение электрона вокруг собственной оси наподобие волчка, однако такое сравнение не совсем корректно), о котором в то время было мало известно.

Следующую попытку Шрёдингер предпринял в 1926 г. Скорости электронов на этот раз были выбраны им настолько малыми, что необходимость в привлечении теории относительности отпадала сама собой. Вторая попытка увенчалась выводом волнового уравнения Шрёдингера, дающего математическое описание материи в терминах волновой функции.

Шрёдингер назвал свою теорию волновой механикой. Решения волнового уравнения находились в согласии с экспериментальными наблюдениями и оказали глубокое влияние на последующее развитие квантовой теории.

В настоящее время волновая функция лежит в основе квантовомеханического описания микросистем, подобно уравнениям Гамильтона в классической механике.

Незадолго до того Вернер Гейзенберг, Макс Борн и Паскуаль Иордан опубликовали другой вариант квантовой теории, получивший название матричной механики, которая описывала квантовые явления с помощью таблиц наблюдаемых величин.

Эти таблицы представляют собой определенным образом упорядоченные математические множества, называемые матрицами, над которыми по известным правилам можно производить различные математические операции.

Матричная механика также позволяла достичь согласия с наблюдаемыми экспериментальными данными, но в отличие от волновой механики не содержала никаких конкретных ссылок на пространственные координаты или время.

Гейзенберг особенно настаивал на отказе от каких-либо простых наглядных представлений или моделей в пользу только таких свойств, которые могли быть определены из эксперимента, так как по его соображениям микромир имеет принципиально иное устройство, чем макромир в виду особой роли постоянной Планка, несущественной в мире больших величин.

Шрёдингер показал, что волновая механика и матричная механика математически эквивалентны.

Известные ныне под общим названием квантовой механики, эти две теории дали долгожданную общую основу описания квантовых явлений.

Многие физики отдавали предпочтение волновой механике, поскольку её математический аппарат был им более знаком, а её понятия казались более “физическими”; операции же над матрицами – более громоздкими.

Источник: https://mirznanii.com/a/321959/sovremennye-problemy-kvantovoy-mekhaniki

Vse-referaty
Добавить комментарий