Явление электромагнитной индукции

Содержание
  1. Электромагнитная индукция – материалы для подготовки к ЕГЭ по Физике
  2. Темы кодификатора ЕГЭ: явление электромагнитной индукции, магнитный поток, закон электромагнитной индукции Фарадея, правило Ленца
  3. Магнитный поток
  4. Эдс индукции
  5. Закон электромагнитной индукции Фарадея
  6. Правило Ленца
  7. Взаимодействие магнита с контуром
  8. Закон Фарадея + Правило Ленца = Снятие модуля
  9. Вихревое электрическое поле
  10. Эдс индукции в движущемся проводнике
  11. Электромагнитная индукция – причины возникновения, значение и способы применения явления
  12. Явление электромагнитной индукции
  13. Объяснение явления
  14. Самоиндукция
  15. Индуктивность
  16. Энергия магнитного поля
  17. Применение электромагнитной индукции
  18. Все формулы по теме «Электромагнитная индукция»
  19. Явление электромагнитной индукции
  20. Векторная форма
  21. Потенциальная форма
  22. Основные формулы
  23. ���������������� ��������
  24. Явление электромагнитной индукции. урок. Физика 9 Класс

Электромагнитная индукция – материалы для подготовки к ЕГЭ по Физике

Явление электромагнитной индукции

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: явление электромагнитной индукции, магнитный поток, закон электромагнитной индукции Фарадея, правило Ленца

Опыт Эрстеда показал, что электрический ток создаёт в окружающем пространстве магнитное поле. Майкл Фарадей пришёл к мысли, что может существовать и обратный эффект: магнитное поле, в свою очередь, порождает электрический ток.

Иными словами, пусть в магнитном поле находится замкнутый проводник; не будет ли в этом проводнике возникать электрический ток под действием магнитного поля?

Через десять лет поисков и экспериментов Фарадею наконец удалось этот эффект обнаружить. В 1831 году он поставил следующие опыты.

1. На одну и ту же деревянную основу были намотаны две катушки; витки второй катушки были проложены между витками первой и изолированы.

Выводы первой катушки подключались к источнику тока, выводы второй катушки — к гальванометру (гальванометр — чувствительный прибор для измерения малых токов).

Таким образом, получались два контура: «источник тока — первая катушка» и «вторая катушка — гальванометр».

Электрического контакта между контурами не было, только лишь магнитное поле первой катушки пронизывало вторую катушку.

При замыкании цепи первой катушки гальванометр регистрировал короткий и слабый импульс тока во второй катушке.

Когда по первой катушке протекал постоянный ток, никакого тока во второй катушке не возникало.

При размыкании цепи первой катушки снова возникал короткий и слабый импульс тока во второй катушке, но на сей раз в обратном направлении по сравнению с током при замыкании цепи.

Вывод.

Меняющееся во времени магнитное поле первой катушки порождает (или, как говорят, индуцирует) электрический ток во второй катушке. Этот ток называется индукционным током.

Если магнитное поле первой катушки увеличивается (в момент нарастания тока при замыкании цепи), то индукционный ток во второй катушке течёт в одном направлении.

Если магнитное поле первой катушки уменьшается (в момент убывания тока при размыкании цепи), то индукционный ток во второй катушке течёт в другом направлении.

Если магнитное поле первой катушки не меняется (постоянный ток через неё), то индукционного тока во второй катушке нет.

Обнаруженное явление Фарадей назвал электромагнитной индукцией (т. е. «наведение электричества магнетизмом»).

2. Для подтверждения догадки о том, что индукционный ток порождается переменным магнитным полем, Фарадей перемещал катушки друг относительно друга. Цепь первой катушки всё время оставалась замкнутой, по ней протекал постоянный ток, но за счёт перемещения (сближения или удаления) вторая катушка оказывалась в переменном магнитном поле первой катушки.

Гальванометр снова фиксировал ток во второй катушке. Индукционный ток имел одно направление при сближении катушек, и другое — при их удалении. При этом сила индукционного тока была тем больше, чем быстрее перемещались катушки.

3. Первая катушка была заменена постоянным магнитом. При внесении магнита внутрь второй катушки возникал индукционный ток. При выдвигании магнита снова появлялся ток, но в другом направлении. И опять-таки сила индукционного тока была тем больше, чем быстрее двигался магнит.

Эти и последующие опыты показали, что индукционный ток в проводящем контуре возникает во всех тех случаях, когда меняется «количество линий» магнитного поля, пронизывающих контур. Сила индукционного тока оказывается тем больше, чем быстрее меняется это количество линий. Направление тока будет одним при увеличении количества линий сквозь контур, и другим — при их уменьшении.

Замечательно, что для величины силы тока в данном контуре важна лишь скорость изменения количества линий. Что конкретно при этом происходит, роли не играет — меняется ли само поле, пронизывающее неподвижный контур, или же контур перемещается из области с одной густотой линий в область с другой густотой.

Такова суть закона электромагнитной индукции. Но, чтобы написать формулу и производить расчёты, нужно чётко формализовать расплывчатое понятие «количество линий поля сквозь контур».

Магнитный поток

Понятие магнитного потока как раз и является характеристикой количества линий магнитного поля, пронизывающих контур.

Для простоты мы ограничиваемся случаем однородного магнитного поля. Рассмотрим контур площади , находящийся в магнитном поле с индукцией .

Пусть сначала магнитное поле перпендикулярно плоскости контура (рис. 1).

Рис. 1.

В этом случае магнитный поток определяется очень просто — как произведение индукции магнитного поля на площадь контура:

(1)

Теперь рассмотрим общий случай, когда вектор образует угол с нормалью к плоскости контура (рис. 2).

Рис. 2.

Мы видим, что теперь сквозь контур «протекает» лишь перпендикулярная составляющая вектора магнитной индукции (а та составляющая, которая параллельна контуру, не «течёт» сквозь него). Поэтому, согласно формуле (1), имеем . Но , поэтому

(2)

Это и есть общее определение магнитного потока в случае однородного магнитного поля. Обратите внимание, что если вектор параллелен плоскости контура (то есть ), то магнитный поток становится равным нулю.

А как определить магнитный поток, если поле не является однородным? Укажем лишь идею. Поверхность контура разбивается на очень большое число очень маленьких площадок, в пределах которых поле можно считать однородным. Для каждой площадки вычисляем свой маленький магнитный поток по формуле (2), а затем все эти магнитные потоки суммируем.

Единицей измерения магнитного потока является вебер (Вб). Как видим,

Вб = Тл · м = В · с. (3)

Почему же магнитный поток характеризует «количество линий» магнитного поля, пронизывающих контур? Очень просто. «Количество линий» определяется их густотой (а значит, величиной — ведь чем больше индукция, тем гуще линии) и «эффективной» площадью, пронизываемой полем (а это есть не что иное, как ). Но множители и как раз и образуют магнитный поток!

Теперь мы можем дать более чёткое определение явления электромагнитной индукции, открытого Фарадеем.

Электромагнитная индукция — это явление возникновения электрического тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего контур.

Эдс индукции

Каков механизм возникновения индукционного тока? Это мы обсудим позже. Пока ясно одно: при изменении магнитного потока, проходящего через контур, на свободные заряды в контуре действуют некоторые силы — сторонние силы, вызывающие движение зарядов.

Как мы знаем, работа сторонних сил по перемещению единичного положительного заряда вокруг контура называется электродвижущей силой (ЭДС): . В нашем случае, когда меняется магнитный поток сквозь контур, соответствующая ЭДС называется Эдс индукции и обозначается .

Итак, Эдс индукции — это работа сторонних сил, возникающих при изменении магнитного потока через контур, по перемещению единичного положительного заряда вокруг контура.

Природу сторонних сил, возникающих в данном случае в контуре, мы скоро выясним.

Закон электромагнитной индукции Фарадея

Сила индукционного тока в опытах Фарадея оказывалась тем больше, чем быстрее менялся магнитный поток через контур.

Если за малое время изменение магнитного потока равно , то скорость изменения магнитного потока — это дробь (или, что тоже самое, производная магнитного потока по времени).

Опыты показали, что сила индукционного тока прямо пропорциональна модулю скорости изменения магнитного потока:

Модуль поставлен для того, чтобы не связываться пока с отрицательными величинами (ведь при убывании магнитного потока будет ). Впоследствии мы это модуль снимем.

Из закона Ома для полной цепи мы в то же время имеем: . Поэтому Эдс индукции прямо пропорциональна скорости изменения магнитного потока:

(4)

ЭДС измеряется в вольтах. Но и скорость изменения магнитного потока также измеряется в вольтах! Действительно, из (3) мы видим, что Вб/с = В. Стало быть, единицы измерения обеих частей пропорциональности (4) совпадают, поэтому коэффициент пропорциональности — величина безразмерная. В системе СИ она полагается равной единице, и мы получаем:

(5)

Это и есть закон электромагнитной индукции или закон Фарадея. Дадим его словесную формулировку.

Закон электромагнитной индукции Фарадея. При изменении магнитного потока, пронизывающего контур, в этом контуре возникает Эдс индукции, равная модулю скорости изменения магнитного потока.

Правило Ленца

Магнитный поток, изменение которого приводит к появлению индукционного тока в контуре, мы будем называть внешним магнитным потоком. А само магнитное поле, которое создаёт этот магнитный поток, мы будем называть внешним магнитным полем.

Зачем нам эти термины? Дело в том, что индукционный ток, возникающий в контуре, создаёт своё собственное магнитное поле, которое по принципу суперпозиции складывается с внешним магнитным полем.

Соответственно, наряду с внешним магнитным потоком через контур будет проходить собственный магнитный поток, создаваемый магнитным полем индукционного тока.

Оказывается, эти два магнитных потока — собственный и внешний — связаны между собой строго определённым образом.

Правило Ленца . Индукционный ток всегда имеет такое направление, что собственный магнитный поток препятствует изменению внешнего магнитного потока .

Правило Ленца позволяет находить направление индукционного тока в любой ситуации.

Рассмотрим некоторые примеры применения правила Ленца.

Предположим, что контур пронизывается магнитным полем, которое возрастает со временем (рис. (3)). Например, мы приближаем снизу к контуру магнит, северный полюс которого направлен в данном случае вверх, к контуру.

Магнитный поток через контур увеличивается. Индукционный ток будет иметь такое направление, чтобы создаваемый им магнитный поток препятствовал увеличению внешнего магнитного потока. Для этого магнитное поле, создаваемое индукционным током, должно быть направлено против внешнего магнитного поля.

Индукционный ток течёт против часовой стрелки, если смотреть со стороны создаваемого им магнитного поля. В данном случае ток будет направлен по часовой стрелке, если смотреть сверху, со стороны внешнего магнитного поля, как и показано на (рис. (3)).

Рис. 3. Магнитный поток возрастает

Теперь предположим, что магнитное поле, пронизывающее контур, уменьшается со временем (рис. 4). Например, мы удаляем магнит вниз от контура, а северный полюс магнита направлен на контур.

Рис. 4. Магнитный поток убывает

Магнитный поток через контур уменьшается. Индукционный ток будет иметь такое направление, чтобы его собственный магнитный поток поддерживал внешний магнитный поток, препятствуя его убыванию. Для этого магнитное поле индукционного тока должно быть направлено в ту же сторону , что и внешнее магнитное поле.

В этом случае индукционный ток потечёт против часовой стрелки, если смотреть сверху, со стороны обоих магнитных полей.

Взаимодействие магнита с контуром

Итак, приближение или удаление магнита приводит к появлению в контуре индукционного тока, направление которого определяется правилом Ленца. Но ведь магнитное поле действует на ток! Появится сила Ампера, действующая на контур со стороны поля магнита. Куда будет направлена эта сила?

Если вы хотите хорошо разобраться в правиле Ленца и в определении направления силы Ампера, попробуйте ответить на данный вопрос самостоятельно. Это не очень простое упражнение и отличная задача для С1 на ЕГЭ. Рассмотрите четыре возможных случая.

1. Магнит приближаем к контуру, северный полюс направлен на контур.2. Магнит удаляем от контура, северный полюс направлен на контур.3. Магнит приближаем к контуру, южный полюс направлен на контур.

4. Магнит удаляем от контура, южный полюс направлен на контур.

Не забывайте, что поле магнита не однородно: линии поля расходятся от северного полюса и сходятся к южному. Это очень существенно для определения результирующей силы Ампера. Результат получается следующий.

Если приближать магнит, то контур отталкивается от магнита. Если удалять магнит, то контур притягивается к магниту. Таким образом, если контур подвешен на нити, то он всегда будет отклоняться в сторону движения магнита, словно следуя за ним. Расположение полюсов магнита при этом роли не играет .

Уж во всяком случае вы должны запомнить этот факт — вдруг такой вопрос попадётся в части А1

Результат этот можно объяснить и из совершенно общих соображений — при помощи закона сохранения энергии.

Допустим, мы приближаем магнит к контуру. В контуре появляется индукционный ток. Но для создания тока надо совершить работу! Кто её совершает? В конечном счёте — мы, перемещая магнит. Мы совершаем положительную механическую работу, которая преобразуется в положительную работу возникающих в контуре сторонних сил, создающих индукционный ток.

Итак, наша работа по перемещению магнита должна быть положительна . Это значит, что мы, приближая магнит, должны преодолевать силу взаимодействия магнита с контуром, которая, стало быть, является силой отталкивания .

Теперь удаляем магнит. Повторите, пожалуйста, эти рассуждения и убедитесь, что между магнитом и контуром должна возникнуть сила притяжения.

Закон Фарадея + Правило Ленца = Снятие модуля

Выше мы обещали снять модуль в законе Фарадея (5). Правило Ленца позволяет это сделать. Но сначала нам нужно будет договориться о знаке Эдс индукции — ведь без модуля, стоящего в правой части (5), величина ЭДС может получаться как положительной, так и отрицательной.

Прежде всего, фиксируется одно из двух возможных направлений обхода контура. Это направление объявляется положительным . Противоположное направление обхода контура называется, соответственно, отрицательным . Какое именно направление обхода мы берём в качестве положительного, роли не играет — важно лишь сделать этот выбор.

Магнитный поток через контур считается положительным , если магнитное поле, пронизывающее контур, направлено туда, глядя откуда обход контура в положительном направлении совершается против часовой стрелки. Если же с конца вектора магнитной индукции положительное направление обхода видится по часовой стрелке, то магнитный поток считается отрицательным .

Эдс индукции считается положительной , если индукционный ток течёт в положительном направлении. В этом случае направление сторонних сил, возникающих в контуре при изменении магнитного потока через него, совпадает с положительным направлением обхода контура.

Наоборот, Эдс индукции считается отрицательной , если индукционный ток течёт в отрицательном направлении. Сторонние силы в данном случае также будут действовать вдоль отрицательного направления обхода контура.

Итак, пусть контур находится в магнитном поле . Фиксируем направление положительного обхода контура. Предположим, что магнитное поле направлено туда, глядя откуда положительный обход совершается против часовой стрелки. Тогда магнитный поток положителен: .

Предположим, далее, что магнитный поток увеличивается . Согласно правилу Ленца индукционный ток потечёт в отрицательном направлении (рис. 5).

Рис. 5. Магнитный поток возрастает

Стало быть, в данном случае имеем . Знак Эдс индукции оказался противоположен знаку скорости изменения магнитного потока. Проверим это в другой ситуации.

А именно, предположим теперь, что магнитный поток убывает . По правилу Ленца индукционный ток потечёт в положительном направлении. Стало быть, (рис. 6).

Рис. 6. Магнитный поток возрастает

Таков в действительности общий факт: при нашей договорённости о знаках правило Ленца всегда приводит к тому, что знак Эдс индукции противоположен знаку скорости изменения магнитного потока :

(6)

Тем самым ликвидирован знак модуля в законе электромагнитной индукции Фарадея.

Вихревое электрическое поле

Рассмотрим неподвижный контур, находящийся в переменном магнитном поле. Каков же механизм возникновения индукционного тока в контуре? А именно, какие силы вызывают движение свободных зарядов, какова природа этих сторонних сил?

Пытаясь ответить на эти вопросы, великий английский физик Максвелл открыл фундаментальное свойство природы: меняющееся во времени магнитное поле порождает поле электрическое . Именно это электрическое поле и действует на свободные заряды, вызывая индукционный ток.

Линии возникающего электрического поля оказываются замкнутыми, в связи с чем оно было названо вихревым электрическим полем . Линии вихревого электрического поля идут вокруг линий магнитного поля и направлены следующим образом.

Пусть магнитное поле увеличивается. Если в нём находится проводящий контур, то индукционный ток потечёт в соответствии с правилом Ленца — по часовой стрелке, если смотреть с конца вектора .

Значит, туда же направлена и сила, действующая со стороны вихревого электрического поля на положительные свободные заряды контура; значит, именно туда направлен вектор напряжённости вихревого электрического поля.

Итак, линии напряжённости вихревого электрического поля направлены в данном случае по часовой стрелке (смотрим с конца вектора , (рис. 7).

Рис. 7. Вихревое электрическое поле при увеличении магнитного поля

Наоборот, если магнитное поле убывает, то линии напряжённости вихревого электрического поля направлены против часовой стрелки (рис. 8).

Рис. 8. Вихревое электрическое поле при уменьшении магнитного поля

Теперь мы можем глубже понять явление электромагнитной индукции. Суть его состоит именно в том, что переменное магнитное поле порождает вихревое электрическое поле. Данный эффект не зависит от того, присутствует ли в магнитном поле замкнутый проводящий контур или нет; с помощью контура мы лишь обнаруживаем это явление, наблюдая индукционный ток.

Вихревое электрическое поле по некоторым свойствам отличается от уже известных нам электрических полей: электростатического поля и стационарного поля зарядов, образующих постоянный ток.

1. Линии вихревого поля замкнуты, тогда как линии электростатического и стационарного полей начинаются на положительных зарядах и оканчиваются на отрицательных.
2.

Вихревое поле непотенциально: его работа перемещению заряда по замкнутому контуру не равна нулю.

Иначе вихревое поле не могло бы создавать электрический ток! В то же время, как мы знаем, электростатическое и стационарное поля являются потенциальными.

Итак, Эдс индукции в неподвижном контуре — это работа вихревого электрического поля по перемещению единичного положительного заряда вокруг контура .

Пусть, например, контур является кольцом радиуса и пронизывается однородным переменным магнитным полем. Тогда напряжённость вихревого электрического поля одинакова во всех точках кольца. Работа силы , с которой вихревое поле действует на заряд , равна:

Следовательно, для Эдс индукции получаем:

Эдс индукции в движущемся проводнике

Если проводник перемещается в постоянном магнитном поле, то в нём также появляется Эдс индукции. Однако причиной теперь служит не вихревое электрическое поле (оно не возникает — ведь магнитное поле постоянно), а действие силы Лоренца на свободные заряды проводника.

Рассмотрим ситуацию, которая часто встречается в задачах. В горизонтальной плоскости расположены параллельные рельсы, расстояние между которыми равно . Рельсы находятся в вертикальном однородном магнитном поле . По рельсам движется тонкий проводящий стержень со скоростью ; он всё время остаётся перпендикулярным рельсам (рис. 9).

Рис. 9. Движение проводника в магнитном поле

Возьмём внутри стержня положительный свободный заряд . Вследствие движения этого заряда вместе со стержнем со скоростью на заряд будет действовать сила Лоренца:

Направлена эта сила вдоль оси стержня, как показано на рисунке (убедитесь в этом сами — не забывайте правило часовой стрелки или левой руки!).

Сила Лоренца играет в данном случае роль сторонней силы: она приводит в движение свободные заряды стержня. При перемещении заряда от точки к точке наша сторонняя сила совершит работу:

(Длину стержня мы также считаем равной .) Стало быть, Эдс индукции в стержне окажется равной:

(7)

Таким образом, стержень аналогичен источнику тока с положительной клеммой и отрицательной клеммой . Внутри стержня за счёт действия сторонней силы Лоренца происходит разделение зарядов: положительные заряды двигаются к точке , отрицательные — к точке .

Допустим сначала,что рельсы непроводят ток.Тогда движение зарядов в стержне постепенно прекратится.

Ведь по мере накопления положительных зарядов на торце и отрицательных зарядов на торце будет возрастать кулоновская сила, с которой положительный свободный заряд отталкивается от и притягивается к — и в какой-то момент эта кулоновская сила уравновесит силу Лоренца. Между концами стержня установится разность потенциалов, равная Эдс индукции (7).

Теперь предположим, что рельсы и перемычка являются проводящими. Тогда в цепи возникнет индукционный ток; он пойдёт в направлении (от «плюса источника» к «минусу» N).

Предположим, что сопротивление стержня равно (это аналог внутреннего сопротивления источника тока), а сопротивление участка равно (сопротивление внешней цепи).

Тогда сила индукционного тока найдётся по закону Ома для полной цепи:

Замечательно, что выражение (7) для Эдс индукции можно получить также с помощью закона Фарадея. Сделаем это.
За время наш стержень проходит путь и занимает положение (рис. 9). Площадь контура возрастает на величину площади прямоугольника :

Магнитный поток через контур увеличивается. Приращение магнитного потока равно:

Скорость изменения магнитного потока положительна и равна Эдс индукции:

Мы получили тот же самый результат, что и в (7). Направление индукционного тока, заметим, подчиняется правилу Ленца. Действительно, раз ток течёт в направлении , то его магнитное поле направлено противоположно внешнему полю и, стало быть, препятствует возрастанию магнитного потока через контур.

На этом примере мы видим, что в ситуациях, когда проводник движется в магнитном поле, можно действовать двояко: либо с привлечением силы Лоренца как сторонней силы, либо с помощью закона Фарадея. Результаты будут получаться одинаковые.

Источник: https://ege-study.ru/ru/ege/materialy/fizika/elektromagnitnaya-indukciya/

Электромагнитная индукция – причины возникновения, значение и способы применения явления

Явление электромагнитной индукции

При изменении тока в электрической цепи возникает магнитное поле. Причиной этого является электромагнитная индукция. Это явление широко применяется на практике. 

В статье рассказывается о том, что это такое, и каковы его основные закономерности.

Явление электромагнитной индукции

При изменении тока происходит образование магнитного поля. Это явление, в свою очередь, влияет на движение электронов. 

Если рассматривать одиночный провод, расположенный прямо, то он будет создавать поле, направление силовых линий которого идёт по кругу в перпендикулярной ему плоскости.

Если в магнитном поле происходят изменения, то это увеличивает или ослабляет силу тока, который проходит по проводнику. Направление изменения зависит от того, как меняется поле. Это явление позволяет преобразовывать электрическую энергию в механическую или наоборот.

Учёный, которому принадлежит заслуга открытия взаимодействия электрического и магнитного полей — Майкл Фарадей. 

Были проведены опыты, которые показали, что изменение магнитного поля способно порождать движение электронов. Это явление впоследствии назвали индукционным током.

Опыты, выполненные этим учёным, выглядят следующим образом:

  1. Фарадей сделал катушку с полой серединой. Её концы соединил с гальванометром. Взял в руки магнит и поместил его внутрь катушки. Если его вдвигать или выдвигать, то на гальванометре отклоняется стрелка, доказывая наличие тока. Чем быстрее выполняемое движение, тем выше его сила. Аналогичный эффект будет достигнут, если магнит будет неподвижен, но будет перемещаться соленоид.

  2. В следующем опыте были использованы две катушки. Большая подключена к гальванометру, а вторая – к источнику. Одна из катушек была настолько узкой, чтоб могла проходить внутрь второй. Если её поместить туда и несколько раз включить и выключить ток, то на гальванометре стрелка отклонится, показывая наличие тока.

  3. Если взять два соленоида под током и один из них подвигать рядом с другим, то в них также возникнет движение электронов.

При проведении таких опытов более быстрое движение создаёт более сильное движение электронов.

Одновременно с Фарадеем аналогичные исследования осуществил Джозеф Генри, однако опубликовал свои результаты позже.

Объяснение явления

Движение носителей заряда — электронов происходит в том случае, когда на них действует электродвижущая сила, создаваемая разностью потенциалов. 

Возникновение тока под действием изменения магнитного поля происходит из-за того, что оно создаёт такую силу, которая носит название ЭДС индукции. Хотя явление индуктивности было обнаружено Фарадеем, он не дал ему теоретического объяснения. 

Теория электромагнитного поля в физике была создана Максвеллом в 1861 году. Этому явлению присущи такие черты:

  • источником движения электронов является переменное магнитное поле;
  • его наличие можно обнаружить по производимому воздействию на электрические заряды;
  • это поле не является потенциальным;
  • силовые линии поля представляют собой замкнутые кривые.

Работа магнитного поля выражается в создании электродвижущей силы для электронов.

Самоиндукция

В этом случае рассматривается ситуация, когда изменение движения электронов порождает ЭДС, вызывающий индукционный ток в этом же проводнике. 

Взяв за основу правило Ленца, можно утверждать, что он имеет направление, противоположное первоначальному изменению.

Самоиндукция похожа на явление инерции. Тяжёлое тело невозможно остановить мгновенно. Также нельзя изменить силу тока за один миг до нужной величины из-за наличия явления самоиндукции.

Это свойство можно продемонстрировать следующим опытом. Нужно сделать две электрических цепи. В одной из них имеется источник и лампочка. Другая сделана аналогичным образом, но различие состоит в том, что в цепь добавлена катушка. 

В первой цепи после включения лампочка загорается сразу. Во второй, учитывая наличие индуктивного элемента, это происходит с заметным опозданием.

После размыкания свет в первой лампочке отключается практически мгновенно, а во второй это происходит замедленно. Важно отметить, что в процессе выключения индукционный ток может превысить первоначальный. Поскольку в этой ситуации он направлен также, как и рабочий, то сила тока может возрасти. В некоторых цепях это может вызвать перегорание лампочки.

Индуктивность

Проводник, через который проходит изменяющийся ток, способен накапливать энергию путём использования магнитного поля. У прямолинейного отрезка провода эта способность имеет незначительную величину. 

Однако, если речь идёт о катушке, то её величина гораздо сильнее. Эта характеристика называется индуктивностью. Она обозначается как «L» и играет важную роль при определении различных характеристик электромагнитного поля.

Магнитный поток в определённом контуре можно выразить посредством формулы Ф = L* I, а электродвижущую силу в виде E = L* (dI/dt).

Ток, проходящий через контур, способен создать электромагнитное поле, причём оно будет тем сильнее, чем быстрее будут происходить его изменения.

На практике для увеличения индуктивности катушки используют вставленные внутрь стержни из ферромагнетика.

Энергия магнитного поля

Электрический ток создаёт магнитное поле. При этом он затрачивает определённую энергию. Её величина равна той работе, которая была затрачена на создание поля. Она вычисляется по следующей формуле:

Здесь использовались такие обозначения:

  • W – энергия магнитного поля;
  • L – индуктивность;
  • I – сила тока.

Если магнитное поле по какой-то причине пропадёт, то его энергия выделится в той или иной форме.

Применение электромагнитной индукции

Это явление активно применяется в различных сферах жизни человеческого общества. 

Далее будут приведены несколько наиболее известных примеров:

  • радиовещание невозможно без использования явления электромагнитной индукции;
  • в медицине магнитотерапия является одним из эффективных методов лечения;
  • при фундаментальных исследованиях для разгона элементарных частиц применяются синхрофазотроны, работа которых основана на явлении индуктивности;
  • счётчики электричества, применяемые в быту для его учёта, используют рассматриваемое явление;
  • для того, чтобы передавать произведённую электростанциями электрическую энергию на большие расстояния, применяются трансформаторы, работа которых построена на использовании электромагнитной индукции;
  • в металлургии для плавки металла применяются индукционные печи.

Использование этого явления очень широко распространено. Приведённые примеры являются только частью различных вариантов использования.

Все формулы по теме «Электромагнитная индукция»

Для того чтобы кратко освежить в памяти формулы, относящиеся к магнитной индукции, далее приводится перечень наиболее важных из них.

Открытие законов, которые описывают поведение электромагнитного поля, является одним из важнейших достижений науки за всю историю. В современной жизни использование этого явления происходит практически во всех областях жизни общества.

Источник: https://nauka.club/fizika/elektromagnitnaya-induktsiya.html

Явление электромагнитной индукции

Явление электромагнитной индукции

Явление электромагнитной индукции – это то, что заставляет работать электрические двигатели, позволяет генераторам вырабатывать электричество.

Именно его открытие в начале XIX века привело к активному развитию таких отраслей, как энергетика, станкостроение, транспорт.

Также данное явление широко применяется в медицине, радиовещании, при производстве расходомеров – счетчиков учета электроэнергии.

Практическое значение электромагнитной индукции

О том, в чем суть этого явления, когда и кто его открыл, что такое индуктивность и самоиндукция, какой энергией характеризуется совокупность магнитных силовых линий, будет рассказано в этой статье.

Классическое определение этого явления гласит, что оно представляет собой появление упорядоченного движения заряженных частиц в замкнутом проводящем ток контуре (проводнике) при изменении проходящей через него, создаваемой постоянным магнитом совокупности силовых магнитных линий.

На заметку. Впервые обнаружить описываемое в статье явление экспериментальным путем получилось в 1831 году у известного ученого-физика Майкла Фарадея. Для своих опытов он использовал железное кольцо с намотанными с двух противоположных сторон витками медного провода, которые были соединены с гальваническим элементом и магнитной стрелкой.

При подключении к первой обмотке гальванического элемента стрелка некоторое время двигалась, после чего останавливалась, после его отключения – плавно возвращалась в первоначальное положение.

Подобные движения стрелки позволили предположить, что упорядоченное движение носителей электрических зарядов может возникать под воздействием совокупности силовых магнитных линий, источником которых служит первая обмотка.

Векторная форма

В векторной форме этот закон выражается следующей формулой:

rot E= ΔB/Δt.

Согласно этой записи, напряжённость (E) электрического поля индукционного тока возрастает при увеличении скорости изменения потока B с силовыми линиями, пересекающими замкнутый контур.

Потенциальная форма

При помощи векторного потенциала закон электромагнитной индукции имеет следующую запись:

E =ΔA/Δt, где:

  • Е – напряженность электрического поля, порождаемого индукционным током;
  • ΔA/Δt – изменение векторного потенциала магнитного поля, проходящего через замкнутый контур, являющийся частью замкнутой цепи проводника.

Основные формулы

Основные формулы для явления магнитной индукции указаны на рисунке ниже.

Основные формулы, описывающие явление электромагнитной индукции

Поняв, в чем заключается суть явления электромагнитной индукции, можно разобраться в том, как работают электродвигатели, генераторы.

Эти знания, помимо большой теоретической ценности, имеет достаточно полезное практическое применение, позволяя самостоятельно находить, в ряде случаев и устранять, неисправности агрегатов, не прибегая к дорогостоящим услугам специалистов.

Более подробно и наглядно об описанном в данной статье явлении можно узнать в следующем видео.

Источник: https://amperof.ru/teoriya/yavlenie-elektromagnitnoj-indukcii.html

���������������� ��������

Явление электромагнитной индукции

������������� � ���������� ��� ��������

���� ��������� � ��������� ���� ��������� � ���������� ��� ���, ����� �� ��� ����� �������� ��������� ������� ����� ����, �� � ���������� ��������� ��������������� ����, ���������� ��� ��������.

��� �������� ��������� � ���������� � � ��� ������, ���� ��� ��������� ��������� �����������, � ������������ ����� ��������� ����, ��������� ��������� ������ �������� �������.

���� ���������, � ������� ��������� ��� ��������, �������� �� �����-���� ������� ����, �� ��� ��������� ���� ��� �� ���� ������� ���, ���������� ������������ �����.

������� �������������� ��� � ���������� ��� ����������� ��� �������� ������� ���������� ���� ���������� ���������������� ���������.

���������������� �������� � ��� �������� �������, �. �. ����������� ������������ ������� � �������������.

������� ���������������� �������� ����� ���������� ���������� � ��������������. �� ������������� ��� �������� ���������� ��������� ������������� �����.

�������� � ����������� ��� ��������

���������� ������, ������ ����� �������� � ����������� ��������������� � ���������� ���.

�������� ��� �������� ������� �� ���������� ������� ����� ����, ������������ ��������� � ������� �������, �. �. �� �������� �������� ���������� � ����.

�������� ��������������� ��� ��������� � ������ ����������� �� �������� �������� ���������� � ��������� ����.

�������� ��������������� ��� ������� ����� � �� ����� ��� ����� ����������, ������� ������������ �������� ������� ����. ��� ������� ����� ���������� ������������ �������� ������� ����, ��� ������� ��� ������������� � ����������. �, �������, ��� ������� ��������� ����, �. �. ��� ������ ��� ��������, ��� ������� ��� ��������� � ����������, ������������ ��� ����.

����, �������� ��� ��������, ����������� � ���������� ��� ��� �������� � ��������� ����, ����� ��������������� �������� ���������� ����, ����� ���������� � �������� ��� �����������.

����������� ��� ���������� �������� � = Blv,

��� � � ��� ��������; � � ��������� ��������; I � ����� ����������; v � �������� �������� ����������.

������� ������ �������, ��� � ����������, �������������� � ��������� ����, ��� �������� ��������� ������ � ��� ������, ���� ���� ��������� ������������ ���������� �������� ������� ����.

���� �� ��������� ������������ ����� ������� ����� ����, �. �. �� ����������, � ��� �� �������� �� ���, �� ������� ��� � ��� �� �������������.

������� ����������� ���� ������� ����������� ������ � ��� ������, ����� ��������� ������������ ��������������� ��������� ������� ������ ����.

����������� ��������������� ��� (� ����� � ���� � ����������) ������� �� ����, � ����� ������� �������� ���������. ��� ����������� ����������� ��������������� ��� ���������� ������� ������ ����.

���� ������� ������ ������ ���� ���, ����� � ��� ������� ��������� ������� ����� ����, � ��������� ������� ����� �������� �� ����������� �������� ����������, �� ��������� ������ ������ ������ ����������� �������� ��������������� ��� � ����������� ���� � ����������.

������� ������ ����

��� �������� � �������

�� ��� ��������, ��� ��� �������� � ���������� ��� �������� ���������� ���������� � ��������� ���� ��� ��� ���������, ��� ��������� ����.

� ��� � ������ ������ ��������� ������ ������������ ���������� �������� ������� ����, ����� ��� ��������������� �� �����.

��������������� ���, � �������������, � ������������ ��� ����� �������� �� ������ � ������������� ����������, �� � � ����������, ������ � �������.

��� �������� ������ ������� ����������� ������� � ��� ������������� ��� �� ���� ����, ��� ��������� ����� ������� ���������� ����� �������, �. �. ����� ��� ��, ��� ��� ���� ��� �������� �������������� ���������� � ���� �������.

���� ������ �������� � ������� ��������, �� ����������� � ��� ��� ����� ��������� ����, ��� ������� ������� ����� ���� �� �����������. ���� ��, ��������, ������ ������ ������ � �������, �� ���������� ������� ����� �������. ������, �������� ������������� ���, � �������������, � ���� ���� � ������� ������� �� �������� �������� �������, �. �.

�� ����, ��������� ������ ������� ����� ���� ���������� ����� �������. ���� ������ ���������� ������� � ������� � ���������� ��������� ������� ������� ������, � ����� ������, �� ����� ��������, ��� ��� ������� ������� ������� ������� ����� ����������� �� ������� ����.

������, �������� ������������� ���, � �������������, � ���� ���� � ������� ������� �� �������� ���������� ������ �������.

�, �������, ���� ������� � ���������� ��������� ���� � ��� �� ������ ������� � ������� � ������� ������ ������, � ����� �� ����������� �������, �� � ������ ������ ������� ������� ���������� �� ������� ����, ��� �� ������. ������, �������� ������������� ���, � �������������, � ���� ���� � ������� ������� �� ����� �� ������. �� �� ���������� ����� ��������, ���� ������ ����������� ������� ��������� �������������.

����������� ��� �������� � ������� ������� �� ����������� ����������� �������. � ���, ��� ���������� ����������� ��� ��������, ������� �����, ������������� �. X. ������.

����� ����� ��� ���������������� ��������

������ ��������� ���������� ������ ������ ������� �������������� �������������� � ��� ��� ��������, ������ ��� ������� ���������� ��������� �����, ������������� �������, ��� ������� ��� � ��� �������������.

���� �������, � ������� ������� ��� ��������, �������� �� ������� ����, �� �� ������ �� ���� ������������ ���, ��������� ������ ���������� ��������� ����, � ���� ���� ������� ������������ � ��������. ���������� ����� �������, ��� ������������ ������� ��������� ���� �������� � ������� ������������ ���, �������, � ���� �������, ������� ������ ������� ���� ��������� ���� � ���� ����.

������ ��� �������, �. X. ���� ��������� �����, ������������ ����������� ������������� ���� � �������, � �������������, � ����������� ��� ��������. ��� ��������, ����������� � ������� ��� ��������� � ��� ���������� ������, ������� � ������� ��� ������ �����������, ��� ������� ��������� ����� �������, ��������� ���� �����, ������������ ��������� ������������ ���������� ������.

����� ����� ���������� ��� ���� ������� �������������� ���� � �����������, ���������� �� ����� ����������� � �� ����, ����� �������� ����������� ��������� �������� ���������� ����.

��� �������� ����������� ������� ������������ ����������� �������, �������������� � ������� �������������, ��� ��� �������� ������� ������������ ������� ��������� ������������ ���.

������������ ���� � ��������� �����������

������������ ��������� ����� �������� ������������� ��� �� ������ � ������ �������, �� � � ��������� ������������� �����������. ���������� ����� ���������� ����������, ��������� ����� ����������� � ��� ���, ��������� ������������ ����. ��� ��� ���������� �������� ���� ���������������� �� ���������� ���������� � ��������� ���������� � ���.

���������� ���������������, �������������� ��������� ������������� ����� � ��������� ������������ ����� ��� ��� �� ��������� ����������, ������� ����������� ������������ � ��� ������������� ������.

������� ��� ������������, ������� ��� ���������� �������� ������������ ����� ����� ������������� ����� � ���������� ��������������� ������ �� ����������, � ���������� �� ������ ������, ������������� ���� �� ������� ������� ��� ����� ������������� ����.

��������� ����� ������������� ���� ��������������� �������� ����� �� ����� ����������.

�� ������ �� �������� �������� ���� ������������ � ��� ���� ��������. �� ������������� ���� ����� ��������, ��������, ������ ������������ �������������� �����, ��������� ������������� ������� � ��� ���������� ��������� ������������ ��������� ������ �������������������� ��������.

�������� �����: ������� ���������������� �������� � ���������

Источник: http://ElectricalSchool.info/main/osnovy/401-jelektromagnitnaja-indukcija.html

Явление электромагнитной индукции. урок. Физика 9 Класс

Явление электромагнитной индукции

На этом уроке мы изучим явление электромагнитной индукции. Во время занятия мы дадим определение явлению электромагнитной индукции. Потом повторим, за счёт чего может существовать электрический ток. Потом опытным путем узнаем, можно ли за счёт воздействия на замкнутый проводник магнитным полем получить в нём электрический ток. 

Сегодняшний урок будет посвящен явлению электромагнитной индукции. Явлением электромагнитной индукции называется явление возникновения электрического тока в проводнике под действием переменного магнитного поля.

Важно, что в данном случае проводник должен быть замкнут. В начале XIX в. после опытов датского ученого Эрстеда стало ясно, что электрический ток создает вокруг себя магнитное поле. После встал вопрос о том, нельзя ли получить электрический ток за счет магнитного поля, т.е.

произвести обратные действия. Если электрический ток создает магнитное поле, то, наверное, и магнитное поле должно создавать электрический ток.

В первой половине XIX века ученые обратились именно к таким опытам: стали искать возможность создания электрического тока за счет магнитного поля.

Впервые удалось достичь успех в этом (т.е. получить электрический ток за счет магнитного поля) английскому физику Майклу Фарадею. Итак, обратимся к опытам Фарадея.

Рис. 1. Опыт, аналогичный опыту Фарадея. При движении магнита в катушке, в ее цепи регистрируется электрический ток

Первая схема была довольно простой. Во-первых, М. Фарадей использовал в своих опытах катушку с большим числом витков. Катушка накоротко была присоединена к измерительному прибору, миллиамперметру (мА).

Нужно сказать, что в те времена не было достаточно хороших инструментов для измерения электрического тока, поэтому пользовались необычным техническим решением: брали магнитную стрелку, располагали рядом с ней проводник, по которому протекал ток, и по отклонению магнитной стрелки судили о протекающем токе.

Так вот в данном случае токи могли быть очень невелики, поэтому использовался прибор мА, т.е. тот, который измеряет маленькие токи.

Вдоль катушки М. Фарадей перемещал постоянный магнит – относительно катушки магнит двигался вверх и вниз.

Обращаем ваше внимание на то, что в этом эксперименте впервые было зафиксировано наличие электрического тока в цепи в результате изменения магнитного потока, который проходит сквозь катушку.

Фарадей обратил внимание и на тот факт, что стрелка мА отклоняется от своего нулевого значения, т.е. показывает, что в цепи существует электрический ток только тогда, когда магнит движется. Стоит только магниту остановиться, стрелка возвращается в первоначальное положение, в нулевое положение, т.е. никакого электрического тока в цепи в этом случае нет.

Вторая заслуга Фарадея – установление зависимости направления индукционного электрического тока от полярности магнита и направления его движения. Стоило Фарадею изменить полярность магнитов и пропускать магнит через катушку с большим числом витков, как тут же менялось направление индукционного тока, того, который возникает в замкнутой электрической цепи.

Т.о. мы пришли к тому, с чего начинали урок: подтвердилась гипотеза, что электрический ток возникает, когда изменяется магнитное поле.

Итак, некоторое заключение. Изменяющееся магнитное поле создает электрический ток. Направление электрического тока зависит от того, какой полюс магнита проходит в данный момент через катушку, в каком направлении движется магнит.

И еще: оказывается, на значение электрического тока влияет количество витков в катушке. Чем больше витков, тем и значение тока будет больше.

Обратимся теперь ко второму эксперименту Фарадея. В чем он заключался?

Рис. 2. Второй эксперимент по исследованию явления электромагнитной индукции

Две катушки размещались близко друг с другом. Одна катушка с большим числом витков подключалась к источнику тока, в этой цепи был ключ, который замыкал и размыкал цепь. Вторая катушка, тоже с большим числом витков, подключенная к миллиамперметру напрямую, никаких источников тока нет.

Как только цепь замыкалась, миллиамперметр показывал наличие электрического тока в цепи. Как только цепь размыкалась, миллиамперметр вновь регистрировал наличие электрического тока, но направление электрического тока изменялось на противоположное. Пока цепь была замкнута, т.е.

пока в цепи протекал электрический ток, миллиамперметр никакого тока в электрической цепи не регистрировал.

Какие выводы были сделаны М.Фарадеем в результате этих экспериментов? Индукционный электрический ток появляется в замкнутой цепи только тогда, когда существует переменное магнитное поле. Причем это магнитное поле должно изменяться.

Если изменения магнитного поля не происходит, то не будет никакого электрического тока. Даже если магнитное поле существует. Мы можем сказать, что индукционный электрический ток прямо пропорционален, во-первых, числу витков, во-вторых, скорости магнитного поля, с которой изменяется это магнитное поле относительно витков катушки.

Рис. 3. От чего зависит величина индукционного тока?

Для характеристики магнитного поля используется величина, которая называется магнитный поток. Она характеризует магнитное поле в целом, мы об этом будем говорить на следующем уроке. Сейчас отметим лишь, что именно изменение магнитного потока, т.е. числа линий магнитного поля, пронизывающих контур с током (катушку, например), приводит к возникновению в этом контуре индукционного тока.

Список дополнительной литературы:

А так ли хорошо знакома вам электромагнитная индукция? // Квант. — 1989. — № 6. — С. 40-41. Лившиц М. Закон электромагнитной индукции или «правило потока»? // Квант. — 1998. — № 3. — С. 37-38. Элементарный учебник физики. Под ред. Г.С. Ландсберга. Т. 2. – М., 1974. Яворский Б.М., Пинский А.А. Основы физики. Т.2. – М.: Физматлит, 2003.

Источник: https://interneturok.ru/lesson/physics/9-klass/elektromagnitnye-yavleniya/yavlenie-elektromagnitnoy-induktsii

Vse-referaty
Добавить комментарий