Закон сохранения энергии в механике

Закон сохранения энергии в механике

Закон сохранения энергии в механике

Путь к правильному пониманию переходов движения из одной формы в другую был намечен М.В. Ломоносовым, который сформулировал закон сохранения массы вещества при химических превращениях и закон сохранения материи и движения.

Количественную формулировку закона сохранения и превращения энергии дали немецкие ученые Ю. Майер и Г. Гельмгольц (XIX в.

): в замкнутой системе энергия может переходить из одних видов в другие и передаваться от одного тела к другому, но ее общее количество остается неизменным.

Закон сохранения и превращения энергии является одним из фундаментальных законов природы, справедливым как для систем макроскопических тел, так и для систем элементарных частиц. Он является выражением вечности и неуничтожимости движения в природе, которое лишь переходит из одной формы в другую.

В замкнутой системе тел, силы взаимодействия между которыми консервативны (потенциальны), отсутствуют взаимные превращения механической энергии в другие виды энергии.

Такие системы называются замкнутыми консервативными и для них справедлив закон сохранения энергии в механике: механическая энергия замкнутой консервативной системы не изменяется в процессе ее движения:

const. (3.11)

Для вывода этого закона рассмотрим систему материальных точек максами m1, m2, … , mn, движущихся со скоростями .

Пусть – равнодействующие внутренних консервативных сил, действующие на каждую из этих точек, а – равнодействующие внешних сил, которые также будем считать консервативными.

Кроме того, будем считать, что на материальные точки действует еще и внешние неконсервативные силы; равнодействующие этих сил, действующих на каждую из материальных точек, обозначим При массы материальных точек постоянны и уравнения движения этих точек по второму закону Ньютона имеют следующий вид:

(3.12)

Двигаясь под действием сил, точки системы за интервал времени dt совершают перемещения . Умножим каждое уравнение системы (3.12) на соответствующее перемещение:

Учитывая, что , получим:

Складывая эти уравнения, получим:

(3.13)

Первый член левой части (3.13) представляет собой приращение кинетической энергии системы:

Второй член равен элементарной работе внутренних и внешних консервативных сил, т.е. равен элементарному приращению потенциальной энергии dEк.

Правая часть уравнения (3.13) задает работу внешних неконсервативных сил, действующих на систему. Таким образом, имеем:

(3.14)

При переходе системы из состояния 1 в какое-либо состояние 2

т.е изменение полной механической энергии системы при переходе из одного состояния в другое равно работе, совершенной при этом внешними неконсервативными силами. Если внешние неконсервативные силы отсутствуют, то из (3.14) следует, что

откуда

const,

что и требовалось доказать.

Закон сохранения механической энергии связан с однородностью времени, т.е. инвариантностью физических законов относительно выбора начала отсчета времени.

Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние), называются консервативными системами.

Системы, в которых механическая энергия постепенно уменьшается за счет преобразования в другие виды энергии, называются диссипативными (диссипация – рассеяние энергии).

Строго говоря, все системы в природе являются диссипативными и в них закон сохранения механической энергии нарушается. Однако при изменении механической энергии всегда возникает эквивалентное количество энергии другого вида.

Таким образом, энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой. В этом состоит физическая сущность закона сохранения и превращения энергии – сущность неуничтожимости материи и ее движения.

Во многих задачах рассматривается одномерное движение тела, потенциальная энергия которого является функцией лишь одной переменной (например, координаты х), т.е. Еп = f(х). График зависимости потенциальной энергии от некоторого аргумента называется потенциальной кривой, анализ которой позволяет определить характер движения тела.

В общем случае потенциальная кривая может иметь достаточно сложный вид, например с несколькими максимумами и минимумами (рис. 3.6).

Проанализируем эту потенциальную кривую в предположении, что система консервативна и в ней выполняется закон сохранения энергии в форме (3.11). Если W– заданная полная энергия тела, то тело может находиться только там, где Еп(х)W, т.е. в областях I и III.

Переходить из области I в область III и обратно тело не может, так как ему препятствует потенциальный барьерCDG, ширина которого равна интервалу значений х, при которых Еп >W, а его высота определяется разностью Епmax-W.

Для того чтобы тело смогло преодолеть потенциальный барьер, ему необходимо сообщить дополнительную энергию, равную высоте барьера или превышающую ее.

В области I тело с полной энергией W оказывается «запертым» в потенциальной яме ABC и совершает колебания между точками с координатами хА и хС.

В точке В с координатой хО потенциальная энергия тела минимальна. Так как действующая на тело сила , а условие минимума потенциальной энергии , то в точке В Fx=0.

При смещении тела из положения хО в результате малых возмущений в системе оно испытывает действие возвращающей силы, поэтому положение хО является положением устойчивого равновесия. Указанные условия выполняются и для точки х* (для Епmax).

Однако эта точка соответствует положению неустойчивого равновесия, так как при малых возмущениях в системе появляется сила, стремящаяся удалить тело от этого положения.

Таким образом, в состоянии устойчивого равновесия замкнутой консервативной системы ее потенциальная энергия имеет минимальное значение, а в состоянии неустойчивого равновесия – максимальное значение.

Рассмотрим применение закона сохранения энергии в механике к расчету абсолютно упругого прямого центрального удара двух шаров. Абсолютно упругим называется такой удар, в результате которого не происходит превращения механической энергии системы соударяющихся тел в другие виды энергии.

Пусть два абсолютно упругих шара массами m1 и m2 до удара движутся поступательно со скоростями и , направленными в одну сторону вдоль линии их центров, причем (рис. 3.7, а). Требуется найти скорости шаров и после их соударения (рис. 3.7, б).

По закону сохранения энергии в механике имеем:

(3.15)

Шары движутся в горизонтальной плоскости, поэтому их потенциальная энергия в поле тяготения Земли при ударе не изменяется, т.е.

Тогда из уравнения (3.15) получаем:

(3.16)

С другой стороны, по закону сохранения импульса

(3.17)

При центральном ударе векторы скоростей , , и направлены вдоль одной прямой. Поэтому в уравнении (3.17) можно перейти от векторов к их модулям:

(3.18)

Решая совместно уравнения (3.16) и (3.18), получим:

(3.19)

Анализ уравнений (3.19) позволяет сделать следующие выводы:

1) Если массы шаров одинаковы (m1=m2=m), то и , т.е. при ударе шары обмениваются скоростями;

2) если масса второго шара m2>>m1, то

Если при этом второй шар был до удара неподвижен (), то , т.е. первый шар отскакивает от неподвижного массивного шара и движется в обратную сторону со скоростью .

Как отмечалось, система тел называется диссипативной, если ее механическая энергия постепенно уменьшается за счет преобразования в другие (немеханические) формы энергии.

В качестве примера рассмотрим диссипацию энергии при абсолютно неупругом прямом центральном ударе двух поступательно движущихся шаров (удар называется абсолютно неупругим, если после удара тела движутся как одно целое, т.е. с одной и той же скоростью).

Общая скорость обоих шаров после удара по закону сохранения импульса равна:

(3.20)

Если шары движутся в горизонтальной плоскости, то их потенциальная энергия Еn остается неизменной. Полная механическая энергия системы до удара

После удара она будет равна

, или, с учетом (3.20):

Найдем изменение полной механической энергии системы в результате неупругого удара:

Таким образом, при неупругом ударе полная механическая энергия системы уменьшается, т.е. часть ее рассеивается на деформацию соударяющихся тел. На деформацию тел затрачивается работа, равная убыли полной механической энергии системы:

Если второе тело до удара было неподвижно (), то

(3.21)

Неупругий удар на практике применяется для целей двоякого рода. Во-первых, для изменения формы тела – ковки и штамповки металла, раздробления тел.

В этом случае важно, чтобы возможно большая часть кинетической энергии первого тела затрачивалась на работу деформации (формула (3.21)), т.е.

чтобы масса неподвижного тела m2 (например, наковальни вместе с куском металла) была во много раз больше массы ударяющего тела m1 (например, молота).

Вторая цель состоит в перемещении тел после удара и преодолении при этом сопротивлений (забивка свай в землю, вбивание клиньев и т.п.).

В этом случае выгодно, чтобы работа, затрачиваемая на деформацию, была как можно меньше и чтобы общая кинетическая энергия обоих тел после удара () была наибольшей.

Для этого необходимо, чтобы масса ударяющего тела m1 (молота) была во много раз больше массы второго тела m2 (сваи, гвоздя).

Краткие выводы

· Энергия – универсальная мера различных форм движения материальных объектов и их взаимодействия. Количественной характеристикой процесса обмена энергией между взаимодействующими телами является физическая скалярная величина – работа сил.

Элементарная работа силы

Работа силы на произвольном участке траектории 1-2

· Мощность – физическая скалярная величина, характеризующая скорость совершения работы:

Мощность, развиваемая силой в данный момент времени, равна скалярному произведению вектора силы на вектор скорости, с которой движется точка приложения этой силы:

· Консервативная сила – сила, работа которой при перемещении из одного положения в другое не зависит от траектории перемещения, а зависит только от начального и конечного положений тела. Силовое поле, в котором консервативные силы совершают работу, называется потенциальным полем.

· Кинетическая энергия– механическая энергия всякого свободно движущегося тела, численно равная работе, которую совершают действующие на тело силы при его торможении до полной остановки:

· Потенциальная энергия – это механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними.

· Связь между консервативной силой и потенциальной энергией устанавливается выражением

gradЕп,

где

gradЕп =

Отсюда, как частные случаи, определяются: а) потенциальная энергия тела массой m на высоте h

б) потенциальная энергия упругодеформированного тела

где k – коэффициент упругости (для пружины – жесткость).

· Полная энергия механической системы – равна сумме кинетической и потенциальной энергий:

· Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние) называются консервативными системами. В таких системах выполняется закон сохранения механической энергии:

const,

т.е. полная механическая энергия консервативной системы со временем не изменяется. Это фундаментальный закон природы, ко торый является следствием однородности времени.

· Система, в которой механическая энергия постепенно уменьшается за счет преобразования в другие формы энергии, называется диссипативной. Строго говоря, все системы в природе являются диссипативными.

Однако при уменьшении механической энергии всегда возникает эквивалентное количество энергии другого вида. Другими словами, энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой.

В этом заключается физическая сущность всеобщего закона сохранения и превращения энергии – неуничтожимость материи и ее движения.

Вопросы для самоконтроля и повторения

1. Что такое энергия, работа, мощность?

2. Как определяется работа переменной силы?

3. Какие силы называются консервативными? Приведите примеры консервативных сил.

4. Какие силы называются диссипативными? Приведите примеры таких сил.

5. Дайте определения кинетической и потенциальной энергии.

6. В чем заключается закон сохранения механической энергии? Для каких систем он выполняется?

7. Каким свойством времени обусловлена справедливость закона сохранения механической энергии?

8. В чем физическая сущность закона сохранения и превращения энергии? Почему он является фундаментальным законом природы?

9. Как на основе закона сохранения механической энергии охарактеризовать положения устойчивого и неустойчивого равновесия консервативной системы?

10. Что такое потенциальная яма? потенциальный барьер?

Примеры решения задач

Задача 1. С башни высотой 20 м горизонтально со скоростью 10 м/с брошен камень массой 400 г (рис. 3.8). Пренебрегая сопротивлением воздуха, определить кинетическую и потенциальную энергию камня через 1 с после начала движения.

Дано: H = 20 м; v0 = 10 м/с; m = 0,4 кг; t = 1c.

Найти: Ek, Eп.

Решение

В точке А где

Подставляя числовые данные, получим Ek = 39,2 Дж, Eп = 59,2 Дж.

Ответ: Ek = 39,2 Дж, Eп = 59,2 Дж.

Задача 2. Автомобиль массой 1,8 т движется в гору, уклон которой составляет 3 м на каждые 100 м пути (рис. 3.9). Определить: а) работу, совершаемую двигателем автомобиля на пути 5 км, если коэффициент трения равен 0,1; б) развиваемую двигателем мощность, если известно, что этот путь был преодолен за 5 мин.

Дано: m = 1800 кг; sinα = 0,03; s = 5000 м; μ = 0,1; t = 300 с.

Найти: А, Р.

Решение

где

Подставляя числовые данные, получим:

А = 11,5·106 Дж, Р = 38,3·103 Вт.

Ответ: А = 11,5 МДж, Р = 38,3·кВт.

Задачи для самостоятельного решения

1. Тело массой 5 кг поднимают с ускорением 2 м/с2. Определить работу силы в течение первых пяти секунд.

2. Определить работу, совершаемую при подъеме груза массой 50 кг по наклонной плоскости с углом наклона 300 к горизонту на расстояние 4 м, если время подъема составляет 2 с, а коэффициент трения 0,06.

3. С башни высотой 35 м горизонтально брошен камень массой 0,3 кг. Пренебрегая сопротивлением воздуха, определить: а) скорость, с которой брошен камень, если через 1 с после начала движения его кинетическая энергия равна 60 Дж; б) потенциальную энергию камня через 1 с после начала движения.

4. Пуля массой 10 г, летевшая горизонтально со скоростью 500 м/с, попадает в баллистический маятник длиной 1 м и массой 5 кг и застревает в нем. Определить угол отклонения маятника.

5. Тело скользит с наклонной плоскости высотой h и углом наклона α к горизонту и движется далее по горизонтальному участку. Принимая коэффициент трения на всем пути постоянным и равным µ, определить расстояние s, пройденное телом на горизонтальном участке, до полной остановки.

6. Автомобиль массой 1,8 т спускается при выключенном двигателе с постоянной скоростью 54 км/ч по наклонной плоскости (угол к горизонту 30). Определить, какой должна быть мощность двигателя автомобиля, чтобы он смог подняться на такой же подъем с той же скоростью.

7. Камень массой 0,2 кг бросили под углом 600 к горизонту со скоростью 15 м/с. Найти кинетическую, потенциальную и полную энергию камня: а) спустя 1 с после начала движения; б) в высшей точке траектории. Сопротивлением воздуха пренебречь.

8. Тело массой 5 кг падает с высоты 20 м. Определить полную энергию тела в точке, находящейся от поверхности Земли на высоте 5 м. Трением тела о воздух пренебречь. Сравнить эту энергию с первоначальной энергией тела.

9. Тело, падая с некоторой высоты, в момент соприкосновения с Землей обладает импульсом 100 кг·м/с и кинетической энергией 500 Дж. Определить: а) с какой высоты тело падало; б) массу тела.

10. Тело брошено под углом 450 к горизонту со скоростью v0 =15 м/с. Используя закон сохранения энергии, определить скорость тела в высшей точке его траектории.

ГЛАВА 4. ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ

ТВЕРДОГО ТЕЛА

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/4_12_zakon-sohraneniya-energii-v-mehanike.html

Конспект

Закон сохранения энергии в механике

Раздел ОГЭ по физике: 1.18. Механическая энергия. Закон сохранения механической энергии. Формула для закона сохранения механической энергии в отсутствие сил трения. Превращение механической энергии при наличии силы трения.

1. Энергия тела – физическая величина, показывающая работу, которую может совершить рассматриваемое тело (за любое, в том числе неограниченное время наблюдения). Тело, совершающее положительную работу, теряет часть своей энергии. Если же положительная работа совершается над телом, энергия тела увеличивается. Для отрицательной работы – наоборот.

  • Энергией называют физическую величину, которая характеризует способность тела или системы взаимодействующих тел совершить работу.
  • Единица энергии в СИ 1 Джоуль (Дж).

2. Кинетической энергией называется энеpгия движущихся тел. Под движением тела следует понимать не только перемещение в пространстве, но и вращение тела. Кинетическая энергия тем больше, чем больше масса тела и скорость его движения (перемещения в пространстве и/или вращения). Кинетическая энеpгия зависит от тела, по отношению к которому измеряют скорость рассматриваемого тела.

  • Кинетическая энергия Ек тела массой m, движущегося со скоростью v, определяется по формуле Ек =mv2/2

3. Потенциальной энергией называется энергия взаимодействующих тел или частей тела. Различают потенциальную энергию тел, находящихся под действием силы тяжести, силы упругости, архимедовой силы. Любая потенциальная энергия зависит от силы взаимодействия и расстояния между взаимодействующими телами (или частями тела). Потенциальная энергия отсчитывается от условного нулевого уровня.

  • Потенциальной энергией обладают, например, груз, поднятый над поверхностью Земли, и сжатая пружина.
  • Потенциальная энергия поднятого груза Еп = mgh.
  • Кинетическая энергия может превращаться в потенциальную, и обратно.

4. Механической энергией тела называют сумму его кинетической и потенциальной энергий. Поэтому механическая энеpгия любого тела зависит от выбора тела, по отношению к которому измеряют скорость рассматриваемого тела, а также от выбора условных нулевых уровней для всех разновидностей имеющихся у тела потенциальных энергий.

  • Механическая энергия характеризует способность тела или системы тел совершить работу вследствие изменения скорости тела или взаимного положения взаимодействующих тел.

5. Внутренней энергией называется такая энергия тела, за счёт которой может совершаться механическая работа, не вызывая убыли механической энергии этого тела. Внутренняя энеpгия не зависит от механической энергии тела и зависит от строения тела и его состояния.

6. Закон сохранения и превращения энергии гласит, что энеpгия ниоткуда не возникает и никуда не исчезает; она лишь переходит из одного вида в другой или от одного тела к другому.

  • Закон сохранения механической энергии: если между телами системы действуют только силы тяготения и силы упругости, то сумма кинетической и потенциальной энергии остается неизменной, то есть механическая энергия сохраняется.

Таблица «Механическая энергия. Закон сохранения энергии».

7. Изменение механической энергии системы тел в общем случае равно сумме работы внешних по отношению к системе тел и работы внутренних сил трения и сопротивления: ΔW = Авнешн + Адиссип

Если система тел замкнута (Авнешн = 0), то ΔW = Адиссип, то есть полная механическая энергия системы тел меняется только за счёт работы внутренних диссипативных сил системы (сил трения).

Если система тел консервативна (то есть отсутствуют силы трения и сопротивления Атр = 0), то ΔW = Авнешн, то есть полная механическая энергия системы тел меняется только за счёт работы внешних по отношению к системе сил.

8. Закон сохранения механической энергии: В замкнутой и консервативной системе тел полная механическая энергия сохраняется: ΔW = 0 или Wп1 + Wк1 = Wп2 + Wк2 . Применим законы сохранения импульса и энергии к основным моделям столкновений тел.

  • Абсолютно неупругий удар (удар, при котором тела движутся после столкновения вместе, с одинаковой скоростью). Импульс системы тел сохраняется, а полная механическая энергия не сохраняется:
  •  Абсолютно упругий удар (удар, при котором сохраняется механическая энергия системы). Сохраняются и импульс системы тел, и полная механическая энергия:

Удар, при котором тела до соударения движутся по прямой, проходящей через их центры масс, называется центральным ударом.

Схема «Механическая энергия.
Закон сохранения энергии. Углубленный уровень«

Конспект урока по физике «Механическая энергия. Закон сохранения энергии». Выберите дальнейшие действия:

  • Вернуться к Списку конспектов по Физике.
  • Проверить свои знания по Физике.

Источник: https://uchitel.pro/%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F-%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%8F-%D0%B7%D0%B0%D0%BA%D0%BE%D0%BD-%D1%81%D0%BE%D1%85%D1%80%D0%B0%D0%BD%D0%B5%D0%BD/

Закон сохранения энергии в механике – Класс!ная физика

Закон сохранения энергии в механике

«Физика – 10 класс»

Как изменяются потенциальная, кинетическая и полная механическая энергии тела при его свободном падении вниз? если тело брошено вверх?

Обратимся к простой системе тел, состоящей из земного шара и поднятого над поверхностью Земли тела, например камня.

Камень падает под действием силы тяжести. Силу сопротивления воздуха учитывать не будем. Изменение кинетической энергии камня равно работе сил тяжести:

ΔЕк = Aт         (5.23)

Изменение потенциальной энергии равно работе силы тяжести, взятой с обратным знаком:

ΔЕп = -Ат       (5.24)

Работа силы тяжести, действующей со стороны камня на земной шар, практически равна нулю. Из-за большой массы земного шара его перемещением и изменением скорости можно пренебречь. Из формул (5.23) и (5.24) следует, что

ΔЕк = -ΔЕп.         (5.25)

Равенство (5.25) означает, что увеличение кинетической энергии системы равно убыли её потенциальной энергии (или наоборот). Отсюда следует, что

ΔЕк + ΔЕп = 0,

или

Δ (Ек + Еп) = 0.         (5.26)

Изменение суммы кинетической и потенциальной энергий системы равно нулю.

Полная механическая энергия Е равна сумме кинетической и потенциальной энергий тел, входящих в систему:

Е = Ек + Еп.         (5.27)

Так как изменение полной энергии системы в рассматриваемом случае согласно уравнению (5.26) равно нулю, то энергия остаётся постоянной:

Е = Ек + Еп = const.         (5.28)

,BR.

Закон сохранения механической энергии:

В изолированной системе, в которой действуют консервативные силы, механическая энергия сохраняется.

Закон сохранения механической энергии является частным случаем общего закона сохранения энергии.

Общий закон сохранения энергии:

Энергия не создаётся и не уничтожается, а только превращается из одной формы в другую.

Учитывая, что в рассматриваемом конкретном случае Еп = mgh и закон сохранения механической энергии можно записать так:

или

Это уравнение позволяет очень просто найти скорость υ2 камня на любой высоте h2 над землёй, если известна начальная скорость камня на исходной высоте h1.

Чем мы пренебрегаем, когда говорим, что механическая энергия падающего камня сохраняется? Какие превращения энергии реально происходят при падении камня в воздухе?

Закон сохранения механической энергии (5.28) легко обобщается на случай любого числа тел и любых консервативных сил взаимодействия между ними. Под Ек нужно понимать сумму кинетических энергий всех тел, а под Еп — полную потенциальную энергию системы. Для системы, состоящей из тела массой m и горизонтально расположенной пружины (см. рис. 5.13), закон сохранения механической энергии имеет вид

Уменьшение механической энергии системы под действием сил трения.

Рассмотрим влияние сил трения на изменение механической энергии системы.

Если в изолированной системе силы трения совершают работу при движении тел относительно друг друга, то её механическая энергия не сохраняется. В этом легко убедиться, толкнув книгу, лежащую на столе. Из-за действия силы трения книга почти сразу останавливается. Сообщённая ей механическая энергия исчезает.

Сила трения совершает отрицательную работу и уменьшает кинетическую энергию. Но потенциальная энергия при этом не увеличивается.

Поэтому полная механическая энергия убывает. Кинетическая энергия не превращается в потенциальную.

Нагревание при действии сил трения легко обнаружить. Для этого, например, достаточно энергично потереть монету о стол. С повышением температуры, как известно из курса физики основной школы, повышается кинетическая энергия теплового движения молекул или атомов. Следовательно, при действии сил трения кинетическая энергия тела превращается в кинетическую энергию хаотично движущихся молекул.

Силы трения (сопротивления) неконсервативны.

Отличие сил трения от консервативных сил становится особенно наглядным, если рассмотреть работу тех и других на замкнутом пути. Работа силы тяжести, например, на замкнутом пути всегда равна нулю.

Она положительна при падении тела с высоты h и отрицательна при подъёме на ту же высоту. Работа же силы сопротивления воздуха отрицательна как при подъёме тела вверх, так и при движении его вниз.

Поэтому на замкнутом пути она обязательно меньше нуля.

В любой системе, состоящей из больших макроскопических тел, действуют силы трения. Следовательно, даже в изолированной системе движущихся тел механическая энергия обязательно убывает. Постепенно затухают колебания маятника, останавливается машина с выключенным двигателем и т. д.

Но убывание механической энергии не означает, что эта энергия исчезает бесследно. В действительности происходит переход энергии из механической формы в другие. Обычно при работе сил трения происходит нагревание тел, или, как говорят, увеличение их внутренней энергии.

Во всех процессах, происходящих в природе, как и в создаваемых приборах, устройствах, всегда выполняется закон сохранения и превращения энергии: энергия не исчезает и не появляется вновь, она может только перейти из одного вида в другой.

В двигателях внутреннего сгорания, паровых турбинах, электродвигателях и т. д. механическая энергия появляется за счёт убыли энергии других форм: химической, электрической и т. д.

Источник: «Физика – 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Назад в раздел «Физика – 10 класс, учебник Мякишев, Буховцев, Сотский»

Законы сохранения в механике – Физика, учебник для 10 класса – Класс!ная физика

Импульс материальной точки — Закон сохранения импульса — Реактивное движение. Успехи в освоении космоса — Примеры решения задач по теме «Закон сохранения импульса» — Механическая работа и мощность силы — Энергия.

Кинетическая энергия — Примеры решения задач по теме «Кинетическая энергия и её изменение» — Работа силы тяжести. Консервативные силы — Работа силы упругости. Консервативные силы — Потенциальная энергия — Закон сохранения энергии в механике — Работа силы тяготения.

Потенциальная энергия в поле тяготения — Примеры решения задач по теме «Закон сохранения механической энергии» — Основное уравнение динамики вращательного движения — Закон сохранения момента импульса.

Кинетическая энергия абсолютно твёрдого тела, вращающегося относительно неподвижной оси — Примеры решения задач по теме «Динамика вращательного движения абсолютно твёрдого тела»

Источник: http://class-fizika.ru/10_a223.html

Закон сохранения механической энергии

Закон сохранения энергии в механике

Статьи

Линия УМК А. В. Перышкина. Физика (7-9)

Физика

Удивительно, но закон сохранения механической энергии — базовый закон механики — открыл немецкий корабельный доктор Роберт Юлий Майер, а не ученый-физик.

Майеру на момент путешествия было всего 28 лет, во время стоянки корабля в тропическом регионе при кровопускании он наблюдал, что багрово-красная кровь, вытекающая во время процедуры у жителей холодной Европы, в тропиках напоминала алую артериальную…

07 августа 2019

Майер предположил, что кровь не меняет цвет, поскольку организму в тропическом климате нет необходимости тратить кислород на поддержание

температуры тела. Вернувшись на родину, перед тем как сформулировать закон сохранения механической энергии, Майер продолжил опыты с открытыми на то время разновидностями энергии:

  • кинетической,
  • потенциальной,
  • внутренней,
  • механической;

…и смог определить, в чем заключается закон сохранения механической энергии.

«Тепло, электричество и перемещение представляют собою феномены, которые могут быть сведены к одной силе, измеряются друг другом и переходят друг в друга по определенным законам» — излагал в своей научной работе Майер.

Английский физик Джеймс Джоуль, чье имя носит единица измерения энергии, и германский естествоиспытатель Герман Гельмгольц несколькими годами позже также
описали закон сохранения энергии.

Кинетическая и потенциальная энергия

Энергия тела — физическая величина, определяющая работу наблюдаемого тела или системы тел за бесконечно долгое время.

В изучении механических явлений рассматривают потенциальную и кинетическую энергии.

  • Единица энергии в СИ 1 Джоуль (Дж).

Кинетическая энергия — энергия, которой обладает тело в движении (вращении, перемещении в пространстве).

Футбольный мяч, летящий в ворота, летящая в цель стрела, выпущенная метким лучником, едущие с горы сани с сидящим в них хохочущим ребенком — все они во время движения характеризуются кинетической энергией.

Кинетическая энергия напрямую зависит от массы тела и скорости перемещения.

Формула кинетической энергии Ек = mv2/2

Где где m — масса объекта;

v  — скорость перемещения объекта в конкретной точке.

Потенциальная энергия. Само по себе тело потенциальной энергией не обладает.  Этот вид энергии характеризует взаимосвязь элементов объекта или двух отдельных тел в пространстве.

Стоящие на вершине холма санки, стрела, вложенная лучником в натянутую тетиву, ядро в стволе средневековой пушки — пример объекта, обладающего потенциальной энергией.

Потенциальная энергия бывает положительной или отрицательной относительно определенного условного нулевого уровня, принятого для системы координат:

  • сила тяжести,
  • сила упругости,
  • архимедова сила

Потенциальная энергия объекта зависит от приложенных к нему сил.

Если оценивать расположение объекта в отношении уровня Земли, то потенциальная энергия объекта на поверхности планеты принимается за ноль.

Уравнение Еп = mɡh поможет рассчитать потенциальную энергию на высоте h:
где m — масса тела;
ɡ – ускорение свободного падения;
h — высота центров масс объектов относительно поверхности планеты;
ɡ = 9,8 м/с2

Потенциальная энергия упруго деформированного объекта (пружины) рассчитывается согласно уравнению:
Еп = k·(∆x)2/2,
где k — коэффициент жёсткости,
∆x — изменение длины объекта вследствие его сжатия или растяжения.

Подробно различные виды потенциальной энергии разбираются на странице 131 учебника «Физика 10 кл. под редакцией Касьянова В. А.»

Физика. 9 класс. Учебник.

Учебник отличаются качественным современным оформлением, в нём приводятся многочисленные слайды и микрофотографии.

Выполняя проблемные, поисковые и исследовательские задания, школьники не только активно усваивают материал, но и учатся мыслить, искать и анализировать информацию из разных источников, в том числе из интернета.

Особое внимание уделяется практическим заданиям: ученикам предлагается проводить опыты, конструировать модели, разрабатывать проекты.

Купить Закон превращения и сохранения энергии

Суммарное число значений потенциальной и кинетической энергий объекта обозначают как механическая энергия. Для каждого конкретного объекта механическая энергия определяется не выбором системы отсчета, в которой рассчитывают скорость движения исследуемого объекта, а установлением уровня условного нуля для всех видов потенциальных энергий, определенных у данного объекта.

Механическая энергия определяет свойство объекта (системы объектов) совершать работу за счет изменения скорости перемещения объекта или изменения расположения взаимодействующих объектов относительно друг друга.

Сформулируем закон сохранения механической энергии с помощью математического уравнения:

Еk1 + Еп1 = Еk2 + Еп2

Глядя на представленную формулу видно, что энергия не появляется из ниоткуда и не исчезает в неизвестном направлении; лишь происходит преобразование одной разновидности в другую или переход между взаимодействующими объектами.

В изолированной или закрытой системе, т.е. системе, на которую не оказывают влияния силы извне или их возможно игнорировать, энергетический обмен с внешней средой не происходит, и внутренняя энергия объекта не изменяется.

В ней могут происходить лишь превращения потенциальной энергии в кинетическую и наоборот. В учебнике «Физика. 10 класс» под редакцией В. А. Касьянова на портале LECTA разобраны примеры задач на закон сохранения энергии.

#ADVERTISING_INSERT#

Источник: https://rosuchebnik.ru/material/zakon-sokhraneniya-mekhanicheskoy-energii/

Механическая энергия. Закон изменения (сохранения) механической энергии. урок. Физика 10 Класс

Закон сохранения энергии в механике

В начале этого раздела мы с вами отмечали то, что энергия, подобно импульсу, – величина сохраняющаяся.

Однако на предыдущих уроках мы с вами убедились, что работа всех сил, действующих на тело, приводит к изменению кинетической и потенциальной энергии тела, однако не получили закон сохранения энергии.

На этом уроке мы выведем закон сохранения полной механической энергии, а также поговорим о том, при каких условиях он справедлив.

Итак, давайте рассмотрим совокупность тел, которые взаимодействуют только друг с другом. Такая совокупность тел называется замкнутой системой. Такая система может обладать как кинетической, так и потенциальной энергией. Кинетической – потому, что тела могут двигаться, потенциальной – поскольку тела взаимодействуют друг с другом.

Пусть  – потенциальная энергия системы в какой-то момент времени, а  – общая кинетическая энергия системы тел в тот же момент времени. Потенциальную и кинетическую энергии этих же тел в какой-нибудь другой момент времени обозначим соответственно через  и .

На предыдущих уроках мы установили, что, когда тела взаимодействуют друг с другом силами тяжести или упругости (другими словами потенциальными или консервативными силами), совершенная этими силами работа равна взятому с противоположным знаком изменению потенциальной энергии тел системы:

.

С другой стороны, согласно теореме о кинетической энергии, эта же работа равна изменению кинетической энергии:

В левых частях этих равенств стоит одна и та же величина – работа сил взаимодействия тел системы. Значит, и правые части равны друг другу:

.

Теперь, если перенести в левую сторону кинетическую и потенциальную энергии тел в первый момент времени, а в правую часть, соответственно, энергии во второй момент времени, получим выражение, которое, по сути, и является законом сохранения полной механической энергии:

.

Из этого выражения видно, что со временем сохраняется величина, равная сумме кинетической и потенциальной энергии. Эта величина называется полной механической энергией. Итак, мы получили один из самых важных законов механики – закон сохранения полной механической энергии:

Полная механическая энергия замкнутой системы тел, взаимодействующих потенциальными силами, остается неизменной при любых движениях тел системы.

Другими словами, если работа какой-либо силы увеличивает потенциальную энергию системы на какую-либо величину, она же уменьшает кинетическую энергию этой системы, причем, на такую же величину.

Рассмотрим несколько примеров замкнутых систем, взаимодействующих между собой потенциальными силами. Во-первых, рассмотрим тела, взаимодействующие силами тяжести, например систему «Земля – падающее тело». Для такой системы, полная механическая энергия:

.

Если между телами системы действует сила упругости, то полная механическая энергия запишется так:

.

Закон сохранения полной механической энергии позволит вам с лёгкостью решать многие задачи механики, однако, прежде чем пользоваться законом сохранения энергии, убедитесь, что система замкнутая и силы которыми взаимодействуют тела потенциальные.

Список литературы

  1. Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Сотский. Физика 10. – М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10-11. – М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике – М.: Наука, 1988.
  4. А. В. Пёрышкин, В. В. Крауклис. Курс физики т. 1. – М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Домашнее задание

Решив задачи к данному уроку, вы сможете подготовиться к вопросам 3 ГИА и вопросам А4 ЕГЭ.

1. Задачи 358, 360, 362, 364, 366, 368, 370 сб. задач А.П. Рымкевич изд. 10 (Источник).

2. Пользуясь законом сохранения энергии, вычислите скорость тела, свободно падающего с некоторой высоты, у поверхности Земли. Сравните полученный результат с тем, который получается из кинематических формул.

3. Рассмотрите следующие вопросы и ответы на них:

Список вопросов – ответов:

Вопрос: Куда девается энергия системы, когда тела взаимодействуют диссипативными силами? Почему при этом нельзя пользоваться законом сохранения полной механической энергии?

Ответ: В основном, энергия под действием диссипативных сил переходит в тепло. В общем случае, можно сказать, что энергия переходит в другую, немеханическую энергию. Таким образом, мы не можем пользоваться законом полной механической энергии, поскольку механика не способна описать тепловые, или какие-либо другие явления, происходящие в этой системе.

Вопрос: Выполняется ли закон сохранения энергии, если на тело одновременно действует и сила тяжести, и упругая сила?

Ответ: Да, конечно, если система тел взаимодействует несколькими консервативными силами, и она замкнута, то закон сохранения полной механической энергии выполняется.

Вопрос: Как влияет на энергию системы тел действие внешней силы? Сохраняется ли в этом случае полная механическая энергия?

Ответ: То, что на систему тел действует внешняя сила, говорит о том, что система перестает быть замкнутой, следовательно, закон сохранения полной механической энергии в ней не работает.

Однако, если в эту систему включить тело, мерой взаимодействия которого и является эта внешняя сила, то эта новая расширенная система уже будет замкнутой, и, следовательно, закон сохранения энергии будет справедлив.

Вопрос: Спутник вращается по орбите вокруг Земли. С помощью ракетного двигателя его перевели на другую орбиту. Изменилась ли его механическая энергия?

Ответ: Да, энергия изменилась за счет того, что система перестала быть замкнутой во время работы ракетного двигателя.

Источник: https://interneturok.ru/lesson/physics/10-klass/bzakony-sohraneniya-v-mehanikeb/mehanicheskaya-energiya-zakon-izmeneniya-sohraneniya-mehanicheskoy-energii?trainers

Закон сохранения энергии

Закон сохранения энергии в механике
Подробности Категория: Механика 20.08.2014 21:02 45621

Закон сохранения энергии утверждает, что энергия тела никогда не исчезает и не появляется вновь, она может лишь превращаться из одного вида в другой. Этот закон универсален. В различных разделах физики он имеет свою формулировку. Классическая механика рассматривает закон сохранения механической энергии.

Полная механическая энергия замкнутой системы физических тел, между которыми действуют консервативные силы, является величиной постоянной. Так формулируется закон сохранения энергии в механике Ньютона.

Замкнутой, или изолированной, принято считать физическую систему, на которую не действуют внешние силы.

В ней не происходит обмена энергией с окружающим пространством, и собственная энергия, которой она обладает, остаётся неизменной, то есть сохраняется.

В такой системе действуют только внутренние силы, и тела взаимодействуют друг с другом. В ней могут происходить лишь превращения потенциальной энергии в кинетическую и наоборот.

Простейший пример замкнутой системы – снайперская винтовка и пуля.

Виды механических сил

 

Силы, которые действуют внутри механической системы, принято разделять на консервативные и неконсервативные.

Консервативными считаются силы, работа которых не зависит от траектории движения тела, к которому они приложены, а определяется только начальным и конечным положением этого тела. Консервативные силы называют также потенциальными. Работа таких сил по замкнутому контуру равна нулю. Примеры консервативных сил – сила тяжести, сила упругости.

Все остальные силы называются неконсервативными. К ним относятся сила трения и сила сопротивления. Их называют также диссипативными силами.

Эти силы при любых движениях в замкнутой механической системе совершают отрицательную работу, и при их действии полная механическая энергия системы убывает (диссипирует). Она переходит в другие, не механические виды энергии, например, в теплоту.

Поэтому закон сохранения энергии в замкнутой механической системе может выполняться, только если неконсервативные силы в ней отсутствуют.

Полная энергия механической системы состоит из кинетической и потенциальной энергии и является их суммой. Эти виды энергий могут превращаться друг в друга.

Потенциальная энергия

Потенциальную энергию называют энергией взаимодействия физических тел или их частей между собой. Она определяется их взаимным расположением, то есть, расстоянием между ними, и равна работе, которую нужно совершить, чтобы переместить тело из точки отсчёта в другую точку в поле действия консервативных сил.

Потенциальную энергию имеет любое неподвижное физическое тело, поднятое на какую-то высоту, так как на него действует сила тяжести, являющаяся консервативной силой. Такой энергией обладает вода на краю водопада, санки на вершине горы.

Откуда же эта энергия появилась? Пока физическое тело поднимали на высоту, совершили работу и затратили энергию. Вот эта энергия и запаслась в поднятом теле. И теперь эта энергия готова для совершения работы.

Величина потенциальной энергии тела определяется высотой, на которой находится тело относительно какого-то начального уровня. За точку отсчёту мы можем принять любую выбранную нами точку.

Если рассматривать положение тела относительно Земли, то потенциальная энергия тела на поверхности Земли равна нулю. А на высоте h она вычисляется по формуле:

Еп = h,

где m – масса тела

ɡ – ускорение свободного падения

h – высота центра масс тела относительно Земли

ɡ = 9,8 м/с2

При падении тела c высоты h1 до высоты h2 сила тяжести совершает работу. Эта работа равна изменению потенциальной энергии и имеет отрицательное значение, так как величина потенциальной энергии при падении тела уменьшается.

A = – (Eп2 – Eп1) = – ∆ Eп ,

где Eп1 – потенциальная энергия тела на высоте h1 ,

Eп2 – потенциальная энергия тела на высоте h2.

Если же тело поднимают на какую-то высоту, то совершают работу против сил тяжести. В этом случае она имеет положительное значение. А величина потенциальной энергии тела увеличивается.

Потенциальной энергией обладает и упруго деформированное тело (сжатая или растянутая пружина). Её величина зависит от жёсткости пружины и от того, на какую длину её сжали или растянули, и определяется по формуле:

Еп = k·(∆x)2/2,

где k – коэффициент жёсткости,

∆x – удлинение или сжатие тела.

Потенциальная энергии пружины может совершать работу.

Кинетическая энергия

В переводе с греческого «кинема» означает «движение». Энергия, которой физическое тело получает вследствие своего движения, называется кинетической. Её величина зависит от скорости движения.

Катящийся по полю футбольный мяч, скатившиеся с горы и продолжающие двигаться санки, выпущенная из лука стрела – все они обладают кинетической энергией.

Если тело находится в состоянии покоя, его кинетическая энергия равна нулю. Как только на тело подействует сила или несколько сил, оно начнёт двигаться.

А раз тело движется, то действующая на него сила совершает работу.

Работа силы, под воздействием которой тело из состояния покоя перейдёт в движение и изменит свою скорость от нуля до ν, называется кинетической энергией тела массой m.

Если же в начальный момент времени тело уже находилось в движении, и его скорость имела значение ν1, а в конечный момент она равнялась ν2, то работа, совершённая силой или силами, действующими на тело, будет равна приращению кинетической энергии тела.

Ek = Ek2 – Ek1

Если направление силы совпадает с направлением движения, то совершается положительная работа, и кинетическая энергия тела возрастает. А если сила направлена в сторону, противоположную направлению движения, то совершается отрицательная работа, и тело отдаёт кинетическую энергию.

Закон сохранения механической энергии

Еk1+ Еп1 = Еk2+ Еп2

Любое физическое тело, находящееся на какой-то высоте, имеет потенциальную энергию. Но при падении оно эту энергию начинает терять. Куда же она девается? Оказывается, она никуда не исчезает, а превращается в кинетическую энергию этого же тела.

Предположим, на какой-то высоте неподвижно закреплён груз. Его потенциальная энергия в этой точке равна максимальному значению. Если мы отпустим его, он начнёт падать с определённой скоростью.

Следовательно, начнёт приобретать кинетическую энергию. Но одновременно начнёт уменьшаться его потенциальная энергия.

В точке падения кинетическая энергия тела достигнет максимума, а потенциальная уменьшится до нуля.

Потенциальная энергия мяча, брошенного с высоты, уменьшается, а кинетическая энергия возрастает. Санки, находящиеся в состоянии покоя на вершине горы, обладают потенциальной энергией. Их кинетическая энергия в этот момент равна нулю.

Но когда они начнут катиться вниз, кинетическая энергия будет увеличиваться, а потенциальная уменьшаться на такую же величину. А сумма их значений останется неизменной.

Потенциальная энергия яблока, висящего на дереве, при падении превращается в его кинетическую энергию.

Эти примеры наглядно подтверждают закон сохранения энергии, который говорит о том, что полная энергия механической системы является величиной постоянной. Величина полной энергии системы не меняется, а потенциальная энергия переходит в кинетическую и наоборот.

На какую величину уменьшится потенциальная энергия, на такую же увеличится кинетическая. Их сумма не изменится.

Для замкнутой системы физических тел справедливо равенство
Ek1 + Eп1 = Ek2 + Eп2,
где Ek1, Eп1 — кинетическая и потенциальная энергии системы до какого-либо взаимодействия, Ek2 , Eп2 — соответствующие энергии после него.

Процесс преобразования кинетической энергии в потенциальную и наоборот можно увидеть, наблюдая за раскачивающимся маятником.

Нажать на картинку

Находясь в крайне правом положении, маятник словно замирает. В этот момент его высота над точкой отсчёта максимальна. Следовательно, максимальна и потенциальная энергия. А кинетическая равна нулю, так как он не движется. Но в следующее мгновение маятник начинает движение вниз.

Возрастает его скорость, а, значит, увеличивается кинетическая энергия. Но уменьшается высота, уменьшается и потенциальная энергия. В нижней точке она станет равной нулю, а кинетическая энергия достигнет максимального значения. Маятник пролетит эту точку и начнёт подниматься вверх налево.

Начнёт увеличиваться его потенциальная энергия, а кинетическая будет уменьшаться. И т.д.

Для демонстрации превращений энергии Исаак Ньютон придумал механическую систему, которую называют колыбелью Ньютона или шарами Ньютона.

Нажать на картинку

Если отклонить в сторону, а затем отпустить первый шар, то его энергия и импульс передадутся последнему через три промежуточных шара, которые останутся неподвижными. А последний шар отклонится с такой же скоростью и поднимется на такую же высоту, что и первый. Затем последний шар передаст свою энергию и импульс через промежуточные шары первому и т. д.

Шар, отведенный в сторону, обладает максимальной потенциальной энергией. Его кинетическая энергия в этот момент нулевая. Начав движение, он теряет потенциальную энергию и приобретает кинетическую, которая в момент столкновения со вторым шаром достигает максимума, а потенциальная становится равной нулю.

Далее кинетическая энергия передаётся второму, затем третьему, четвёртому и пятому шарам. Последний, получив кинетическую энергию, начинает двигаться и поднимается на такую же высоту, на которой находился первый шар в начале движения. Его кинетическая энергия в этот момент равна нулю, а потенциальная равна максимальному значению.

Далее он начинает падать и точно так же передаёт энергию шарам в обратной последовательности.

Так продолжается довольно долго и могло бы продолжаться до бесконечности, если бы не существовало неконсервативных сил.

Но в реальности в системе действуют диссипативные силы, под действием которых шары теряют свою энергию. Постепенно уменьшается их скорость и амплитуда. И, в конце концов, они останавливаются.

Это подтверждает, что закон сохранения энергии выполняется только в отсутствии неконсервативных сил.

Источник: http://ency.info/materiya-i-dvigenie/mekhanika/329-zakon-sokhraneniya-energ

§2.8 Закон сохранения энергии в механике

Закон сохранения энергии в механике

В1018 г.Эмми Нётер, немецкий физик иматематик, доказал фундаментальнуютеорему физики, которую в упрощённомвиде можно сформулировать так: каждомусвойству симметрии пространства ивремени соответствует свой законсохранения.

В частности, как следует изтеоремы (теоремыНётер)однородности времени должен соответствоватьзаконсохранения энергии: прилюбых процессах, происходящих в замкнутойконсервативной системе, её полнаямеханическая энергия не изменяется.

Элементарнаяработа потенциальных сил равна взятомус обратным знаком эле­ментарномуизменению потенциальной энергии dA=-dEп. Так как иных сил в системе нет, то таже элементарная работа равна элементарномуизменению кинетической энергии dA=dEк.По­этому можем записать

-dEп= dEк

dEк+ dEп= 0,

d(Ек+ Еп)= 0. (2.34) Обозначим

Ек+ Еп= Е (2.35)

здесьЕ — полнаямеханическая энергия.Из (2.39) видим, что полная механическаяэнергия остается постоянной:

E=const (2.36)

Прирешении задач в механике удобнопользоваться законом сохранения энергиив виде

ΔEк= ΔEп или Ек1+ Еп1= Ек2+ Еп2. (2.37) здесь Ек1и Еп1,— соответственно кинетическая ипотенциальная энергии тела (системы) вначальном положении; Ек2и Еп2— то же для конечного положения тела(системы).

Законсохранения энергии в механике являетсячастным случаем более общего законасохранения и превращения энергии,который является одним из основныхзаконов природы.

Вземных условиях невозможно указатьконсервативную систему, хотя бы потому,что всегда действуют силы трения исопротивления (диссипативные силы),происходит уменьшение механическойэнергии (диссипация энергии).

В этомслучае механическая энергия уже небудет оставаться постоянной; она будетизменяться, и её изменение, как это видноиз формулы (2.

38)будет складываться из изменениякинетической энергии ΔEк,и изменения потенциальной энергии ΔEп:

ΔЕ=ΔEк,+ΔEп.. (2.38)

Учитываясоотношения (2.27)и (2.32),выражающие теорему о кинетической ипотенциальной энергиях, последнееравенство можно переписать так:

ΔЕ=Апот+Адис-Апот=Адис. (2.39)

Изменениеполной механической энергии неконсервативнойсистемы равно сумме работы диссипативныхсил.

Таккак диссипативные силы направленыпротивоположно перемещению, то работаэтих сил отрицательна и, следовательно,механическая энергия системы уменьшается.

§2.9 Столкновение тел

Столкновениетел – одно из наиболее часто встречающихсяявлений в жизни. При столкновениипроисходит их кратковременноевзаимодействие, сопровождающееся какдеформацией, так и изменением направленияих движения. Особый интерес представляютдва вида столкновений – абсолютноупругий и абсолютно неупругий удары.

Простейшимвидом соударения является центральныйудар тел. При этом ударе тела движутсятолько поступательно, их скоростьнаправлена по прямой, соединяющей центрымасс.

Абсолютнонеупругий удар.Такназывается столкновение двух тел, врезультате которого они соединяютсявместе и движутся дальше как одно целое.Например, столкновение слипающихсяпластилиновых шариков; попаданиеружейной пули в ящик с песком и т.д.

Пустьодин из шаров массойm1догоняет другой массой m2(рис. 2.12).

Можнозаписать

m1υ1+m2υ2=(m1+m2)υ (2.40)

откуда (2.41)

здесьυ1и υ2— скорости взаимодействующих шаров доудара; υ — их скорость после удара.

Направлениявекторов скоростей в общем случаеопределяются правилом:скорости положительны, если направленывдоль оси ОХ, и отрицательны, еслинаправлены противоположно.

Рассмотримнесколько частных случаев.

1.Если массы шаров равны (m1= m2),то из (2.45) получим

(2.42)

2.Удар шара о стенку. Неподвижное тело(стенка) (υ2= 0) значительно массивнее шара (m2» m1),тогда

(2.43)

т.е.налетевшее тело остановится послеабсолютно неупругого удара, при этом υ2считаемне слишком большой.

Приабсолютно неупругом ударе механическаяэнергия шаров не сохраняется, так какв системе действуют диссипативные силыи происходит потеря кинетическойэнергии, в результате чего механическаяэнергия системы уменьшается, переходяво внутреннюю энергию ΔЕ сталкивающихсятел (которые при этом нагреваются). Нозакон сохранения полной энергиивыполняется, т.е. сумма всех видов энергиизамкнутой системы тел до и послестолкновений остаётся неизменной:

(2.44)

Абсолютноупругий удар.Такназывается столкновение тел, в результатекоторого не происходит соединения телв одно целое и их внутренние энергииостаются неизменными. При абсолютноупругом ударе сохраняется не толькоимпульс, но и механическая энергиясистемы.

Кабсолютно упругому удару можно применитьзакон сохранения механической энергии:

(2.45)

гдеm1и m2— массы взаимодействующих шаров; υ1,υ2– их скорости до удара; u1,u2—после удара.

Потем же причинам, которые были изложеныдля абсолютно неупругого удара, к этомуслучаю можно применить и закон сохраненияимпульса:

m1υ1+m2υ2=m1u1+m2u2 (2.46)

Решаясовместно уравнения (2.49) и (2.50), получим

(2.47)

(2.48)

Источник: https://studfile.net/preview/6214974/page:9/

Законы сохранения в механике – FIZI4KA

Закон сохранения энергии в механике

ЕГЭ 2018 по физике ›

Импульс тела – это векторная физическая величина, равная произведению массы тела на его скорость:

Обозначение – ​\( p \)​, единицы измерения – (кг·м)/с.

Импульс тела – это количественная мера движения тела. Направление импульса тела всегда совпадает с направлением скорости его движения.

Изменение импульса тела равно разности конечного и начального значений импульса тела:

где ​\( p_0 \)​ – начальный импульс тела,
​\( p \)​ – конечный импульс тела.

Если на тело действует нескомпенсированная сила, то его импульс изменяется. При этом изменение импульса тела равно импульсу подействовавшей на него силы.

Импульс силы – это количественная мера изменения импульса тела, на которое подействовала эта сила.

Обозначение – ​\( F\!\Delta t \)​, единицы измерения — Н·с.
Импульс силы равен изменению импульса тела:

Направление импульса силы совпадает по направлению с изменением импульса тела.

Второй закон Ньютона (силовая форма):

Важно!
Следует всегда помнить, что совпадают направления векторов:

• силы и ускорения: ​\( \vec{F}\uparrow\uparrow\vec{a} \)​;
• импульса тела и скорости: \( \vec{p}\uparrow\uparrow\vec{v} \)​;
• изменения импульса тела и силы: \( \Delta\vec{p}\uparrow\uparrow\vec{F} \);
• изменения импульса тела и ускорения: \( \Delta\vec{p}\uparrow\uparrow\vec{a} \).

Импульс системы тел

Импульс системы тел равен векторной сумме импульсов тел, составляющих эту систему:

При рассмотрении любой механической задачи мы интересуемся движением определенного числа тел. Совокупность тел, движение которых мы изучаем, называется механической системой или просто системой.

Рассмотрим систему, состоящую из трех тел. На тела системы действуют внешние силы, а между телами действуют внутренние силы.

​\( F_1,F_2,F_3 \)​ – внешние силы, действующие на тела;
​\( F_{12}, F_{23}, F_{31}, F_{13}, F_{21}, F_{32} \)​ – внутренние силы, действующие между телами.
Вследствие действия сил на тела системы их импульсы изменяются.

Если за малый промежуток времени сила заметно не меняется, то для каждого тела системы можно записать изменение импульса в виде уравнения:

В левой части каждого уравнения стоит изменение импульса тела за малое время ​\( \Delta t \)​.
Обозначим: ​\( v_0 \)​ – начальные скорости тел, а ​\( v{\prime} \)​ – конечные скорости тел.
Сложим левые и правые части уравнений.

Но силы взаимодействия любой пары тел в сумме дают нуль.

Важно!
Импульс системы тел могут изменить только внешние силы, причем изменение импульса системы пропорционально сумме внешних сил и совпадает с ней по направлению. Внутренние силы, изменяя импульсы отдельных тел системы, не изменяют суммарный импульс системы.

Закон сохранения импульса

Закон сохранения импульса
Векторная сумма импульсов тел, составляющих замкнутую систему, остается постоянной при любых взаимодействиях тел этой системы между собой:

Замкнутая система – это система, на которую не действуют внешние силы.
Абсолютно упругий удар – столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций.
При абсолютно упругом ударе взаимодействующие тела до и после взаимодействия движутся отдельно.

Закон сохранения импульса для абсолютно упругого удара:

Абсолютно неупругий удар – столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое.

Закон сохранения импульса для абсолютно неупругого удара:

Реактивное движение – это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-то его части.

Принцип реактивного движения основан на том, что истекающие из реактивного двигателя газы получают импульс. Такой же по модулю импульс приобретает ракета.

Для осуществления реактивного движения не требуется взаимодействия тела с окружающей средой, поэтому реактивное движение позволяет телу двигаться в безвоздушном пространстве.

Реактивные двигатели Широкое применение реактивные двигатели в настоящее время получили в связи с освоением космического пространства. Используются они также для метеорологических и военных ракет различного радиуса действия. Кроме того, все современные скоростные самолеты оснащены воздушно-ракетными двигателями.

Реактивные двигатели делятся на два класса:

  • ракетные;
  • воздушно-реактивные.

В ракетных двигателях топливо и необходимый для его горения окислитель находятся непосредственно внутри двигателя или в его топливных баках.

Ракетный двигатель на твердом топливе
При горении топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры.

Сила давления на переднюю стенку камеры больше, чем на заднюю, где находится сопло. Выходящие через сопло газы не встречают на своем пути стенку, на которую могли бы оказать давление.

В результате появляется сила, толкающая ракету вперед.

Сопло – суженная часть камеры, служит для увеличения скорости истечения продуктов сгорания, что, в свою очередь, повышает реактивную силу. Сужение струи газа вызывает увеличение его скорости, так как при этом через меньшее поперечное сечение в единицу времени должна пройти такая же масса газа, что и при большем поперечном сечении.

Ракетный двигатель на жидком топливе

В ракетных двигателях на жидком топливе в качестве горючего используют керосин, бензин, спирт, жидкий водород и др., а в качестве окислителя – азотную кислоту, жидкий кислород, перекись водорода и пр.

Горючее и окислитель хранятся отдельно в специальных баках и с помощью насосов подаются в камеру сгорания, где температура достигает 3000 0С и давление до 50 атм.

В остальном работает так же, как и двигатель на твердом топливе.

Воздушно-реактивный двигатель

В носовой части находится компрессор, засасывающий и сжижающий воздух, который затем поступает в камеру сгорания. Жидкое горючее (керосин) попадает в камеру сгорания с помощью специальных форсунок.

Раскаленные газы выходят через сопло, вращают газовую турбину, приводящую в движение компрессор.

Основное отличие воздушно-реактивных двигателей от ракетных двигателей состоит в том, что окислителем для горения топлива служит кислород воздуха, поступающего внутрь двигателя из атмосферы.

Алгоритм применения закона сохранения импульса к решению задач:

  1. Запишите краткое условие задачи.
  2. Определите характер движения и взаимодействия тел.
  3. Сделайте рисунок, на котором укажите направление векторов скоростей тел до и после взаимодействия.
  4. Выберите инерциальную систему отсчета с удобным для нахождения проекций векторов направлением координатных осей.
  5. Запишите закон сохранения импульса в векторной форме.
  6. Спроецируйте его на выбранные координатные оси (сколько осей, столько и уравнений в системе).
  7. Решите полученную систему уравнений относительно неизвестных величин.
  8. Выполните действия единицами измерения величин.
  9. Запишите ответ.

Работа силы

Механическая работа – это скалярная векторная величина, равная произведению модулей вектора силы, действующей на тело, вектора перемещения и косинуса угла между этими векторами.

Обозначение – ​\( A \)​, единицы измерения – Дж (Джоуль).

1 Дж – это работа, которую совершает сила в 1 Н на пути в 1 м:

Механическая работа совершается, если под действием некоторой силы, направленной не перпендикулярно, тело перемещается на некоторое расстояние.

Зависимость механической работы от угла ​\( \alpha \)​

  • ​\( \alpha=0{\circ},\, \cos\alpha=1,\, A=FS,\,A>0; \)​
  • ​\( 0{\circ}

Источник: https://fizi4ka.ru/egje-2018-po-fizike/zakony-sohranenija-v-mehanike.html

Vse-referaty
Добавить комментарий